Skip to main content
Log in

New Criterion for the Analyticity of Functions: Representation Via the Metric Tensors of the Surfaces Z = u and Z = 𝜐

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish a new criterion for the analyticity of a function \( w=u+i\upupsilon \kern0.5em \mathrm{or}\kern0.5em \overline{w}=u-i\upupsilon, \) where u(x, y), v(x, y) ∈ C1(G) in a domain G. It is expressed via the metric tensors of the surfaces Z = u and Z = v : g11− a22 = 0, g12 + a12 = 0, and g22− a11 = 0. We also discover some other equivalents of the analytic function and establish the invariance of the obtained relations under conformal transformations. The generalized version of the new criterion is also proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Riemann, in: Grundlagen fur Eine Allgemeine Theorie der Functionen Einer Veranderlichen Complexen Grosse, Göttingen (1851), pp. 3–48.

  2. G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading (1957).

    MATH  Google Scholar 

  3. J. A. Hogan and M. A. Joel, “Quaternionic wavelets,” Numer. Funct. Anal. Optim., 33, No. 7-9, 1031–1062 (2012).

    Article  MathSciNet  Google Scholar 

  4. D. E. Blair and B. Korkmaz, “Special directions in complex contact manifolds,” Beitr. Algebra Geom., 50, No. 2, 309–325 (2009).

    MathSciNet  MATH  Google Scholar 

  5. I. N. Vekua, Generalized Analytic Functions [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  6. D. Kalaj and M. Mateljevic, “On quasiconformal harmonic surfaces with rectifiable boundary,” Complex Anal. Oper. Theory, 5, No. 3, 633–646 (2011).

    Article  MathSciNet  Google Scholar 

  7. T. Luks, “Boundary behavior of 𝛼-harmonic functions on the complement of the sphere and hyperplane,” Potential Anal., 39, No. 1, 29–67 (2013).

    Article  MathSciNet  Google Scholar 

  8. H. Urakawa, “Harmonic maps and biharmonic maps on principal bundless and warped products,” J. Korean Math. Soc., 55, No. 3, 553–574 (2018).

    MathSciNet  MATH  Google Scholar 

  9. N. Aldea, “About a special class of two-dimensional complex Finsler spaces,” Indian J. Pure Appl. Math., 43, No. 2, 107–127 (2012).

    Article  MathSciNet  Google Scholar 

  10. J. Dorfmeister, S. Kobayashi, and F. Pedit, “Complex surfaces of constant mean curvature fibered by minimal surfaces,” Hokkaido Math. J., 39, No. 1, 1–55 (2010).

    Article  MathSciNet  Google Scholar 

  11. V. K. Dzyadyk, “Geometric definition of analytic functions,” Usp. Mat. Nauk, 15, Issue 1(91), 191–194 (1960).

  12. A. W. Goodman, “On a characterization of analytic function,” Amer. Math. Mon., 71, No. 3, 265–267 (1964).

    Article  MathSciNet  Google Scholar 

  13. A. W. Goodman, “A partial differential equation and parallel plane curves,” Amer. Math. Mon., 71, No. 3, 257–264 (1964).

    Article  MathSciNet  Google Scholar 

  14. Yu. Yu. Trokhimchuk, “On one criterion for analyticity of functions,” Ukr. Mat. Zh., 59, No. 10, 1410–1418 (2007); English translation: Ukr. Math. J., 59, No. 10, 1581–1590 (2007).

    Article  MathSciNet  Google Scholar 

  15. Yu. Yu. Trokhimchuk and V. M. Safonov, “On one criterion of constancy of a complex function,” Ukr. Mat. Zh., 51, No. 8, 1096–1104 (1999); English translation: Ukr. Math. J., 51, No. 8, 1237–1245 (1999).

    Article  MathSciNet  Google Scholar 

  16. E. Kreyszig and A. Pendl, “Über die Gauss–Krummung der Real- und Imaginarteilflachen analytischer Funktionen,” Elem. Math., 28, No. 1, 10–13 (1973).

    MathSciNet  MATH  Google Scholar 

  17. R. Jerrard, “Curvatures of surfaces associated with holomorphic functions,” Colloq. Math., 21, No. 1, 127–132 (1970).

    Article  MathSciNet  Google Scholar 

  18. L. L. Bezkorovaina, “Surfaces generated by the real and imaginary parts of analytic functions: A-deformations that occur independently or simultaneously,” Ukr. Mat. Zh., 70, No. 4, 447–463 (2018); English translation: Ukr. Math. J., 70, No. 4, 513–531 (2018).

  19. L. L. Bezkorovaina, “Geometric aspects of analytic functions,” Mat. Met. Fiz.-Mekh. Polya, 59, No. 3, 77–88 (2016); English translation: J. Math. Sci., 236, No. 1, 83–97 (2019).

  20. V. F. Kagan, Foundations of the Theory of Surfaces in Tensor Presentation, Parts 1, 2 [in Russian] OGIZ, Moscow (1947).

    Google Scholar 

  21. B. A. Dubrovin, S. P. Novikov, and A. T. Fomenko, Modern Geometry: Methods and Applications [in Russian], Nauka, Moscow (1986).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Bezkorovaina.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 5, pp. 596–609, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezkorovaina, L.L. New Criterion for the Analyticity of Functions: Representation Via the Metric Tensors of the Surfaces Z = u and Z = 𝜐. Ukr Math J 71, 677–691 (2019). https://doi.org/10.1007/s11253-019-01670-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01670-3

Navigation