Skip to main content
Log in

Bernstein–Walsh-Type Polynomial Inequalities in Domains Bounded by Piecewise Asymptotically Conformal Curve with Nonzero Inner Angles in the Bergman Space

  • Published:
Ukrainian Mathematical Journal Aims and scope

We continue our investigation of the order of growth of the modulus of an arbitrary algebraic polynomial in the Bergman weight space, where the contour and weight functions have certain singularities. In particular, we deduce a Bernstein–Walsh-type pointwise estimate for algebraic polynomials in unbounded domains with piecewise asymptotically conformal curves with nonzero inner angles in the Bergman weight space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. G. Abdullayev and V. V. Andrievskii, “On the orthogonal polynomials in domains with K-quasiconformal boundary,” Izv. Akad. Nauk Azerb. SSR, Ser. FTM, 1, 3–7 (1983).

    Google Scholar 

  2. F. G. Abdullaev, “On some properties of orthogonal polynomials over an area in domains of the complex plane. III,” Ukr. Mat. Zh., 53, No. 12, 1588–1599 (2001); Ukr. Math. J., 53, No. 12, 1934–1948 (2001).

  3. F. G. Abdullayev, “On the interference of the weight boundary contour for orthogonal polynomials over the region,” J. Comput. Anal. Appl., 6, No. 1, 31–42 (2004).

    MathSciNet  MATH  Google Scholar 

  4. F. G. Abdullayev and P. Özkartepe, “An analog of the Bernstein–Walsh lemma in Jordan regions of the complex plane,” J. Inequal. Appl., 570, 1–7 (2013).

    MATH  Google Scholar 

  5. F. G. Abdullayev and C. D. Gün, “On the behavior of the algebraic polynomials in regions with piecewise smooth boundary without cusps,” Ann. Polon. Math., 111, 39–58 (2014).

    Article  MathSciNet  Google Scholar 

  6. F. G. Abdullayev and P. Özkartepe, “On the behavior of algebraic polynomial in unbounded regions with piecewise Dini-smooth boundary,” Ukr. Mat. Zh., 66, No. 5, 579–597 (2014); Ukr. Math. J., 66, No. 5, 645–665 (2014).

    Article  MathSciNet  Google Scholar 

  7. F. G. Abdullayev and N. P. Özkartepe, “Uniform and pointwise Bernstein–Walsh-type inequalities on a quasidisk in the complex plane,” Bull. Belg. Math. Soc., 23, No. 2, 285–310 (2016).

    MathSciNet  MATH  Google Scholar 

  8. F. G. Abdullayev and P. Özkartepe, “On the growth of algebraic polynomials in the whole complex plane,” J. Korean Math. Soc., 52, No. 4, 699–725 (2015).

    Article  MathSciNet  Google Scholar 

  9. F. G. Abdullayev and P. Özkartepe, “Uniform and pointwise polynomial inequalities in regions with cusps in the weighted Lebesgue space,” Jaen J. Approxim., 7, No. 2, 231–261 (2015).

    MathSciNet  MATH  Google Scholar 

  10. F. G. Abdullayev and T. Tunç, “Uniform and pointwise polynomial inequalities in regions with asymptotically conformal curve on weighted Bergman space,” Lobachevskii J. Math., 38, No. 2, 193–205 (2017).

    Article  MathSciNet  Google Scholar 

  11. F. G. Abdullayev, T. Tunç, and G. A. Abdullayev, “Polynomial inequalities in quasidisks on weighted Bergman space,” Ukr. Mat. Zh., 69, No. 5, 582–598 (2017); Ukr. Math. J., 69, No. 5, 675–695 (2017).

    Article  MathSciNet  Google Scholar 

  12. G. A. Abdullayev, F. G. Abdullayev, and A. Taylakova, “Polynomial inequalities in regions bounded by piecewise asymptotically conformal curve with nonzero angles in the Bergman space,” Adv. Anal., 3, No. 4, 143–153 (2018).

    Google Scholar 

  13. L. Ahlfors, Lectures on Quasiconformal Mappings, Van Nostrand, Princeton (1966).

    MATH  Google Scholar 

  14. J. M. Anderson, J. Becker, and F. D. Lesley, “Boundary values of asymptotically conformal mapping,” J. London Math. Soc., 38, No. 2, 453–462 (1988).

    Article  MathSciNet  Google Scholar 

  15. P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1974).

    Google Scholar 

  16. J. Becker and C. Pommerenke, “Über die quasikonforme Fortsetzung schlichten Funktionen,” Math. Z., 161, 69–80 (1978).

    Article  MathSciNet  Google Scholar 

  17. S. N. Bernstein, “Sur l’ordre de la meilleure approximation des fonctions continues par les polynomes de degre donne,” Mem. Cl. Sci. Acad. Roy. Belg., 4, No. 2, 1–103 (1912).

    MATH  Google Scholar 

  18. E. M. Dyn’kin, “Nonanalytic symmetry principle and conformal mappings,” St.Petersburg Math. J., 5, 523–544 (1994).

    MathSciNet  Google Scholar 

  19. V. K. Dzyadyk, Introduction to the Theory of Uniform Approximation of Functions by Polynomials [in Russian], Nauka, Moscow (1977).

    MATH  Google Scholar 

  20. V. Gutlyanskii and V. Ryazanov, “On asymptotically conformal curves,” Complex Var., 25, 357–366 (1994).

    MathSciNet  MATH  Google Scholar 

  21. V. Gutlyanskii and V. Ryazanov, “On the local behavior of quasiconformal mappings,” Izv. Math., 59, No. 3, 471–498 (1995).

    Article  MathSciNet  Google Scholar 

  22. V. Ya. Gutlyanskii and V. I. Ryazanov, “On quasicircles and asymptotically conformal circles,” Dokl. Ros. Akad. Nauk, 330, No. 5, 546–548 (1993); English translation:Rus. Acad. Sci. Math., 47, 563–566 (1993).

  23. G. Faber, “Über nach Polynomen fortschreitende Reihen,” Sitzungsber. Bayer. Akad. Wiss., 157–178 (1922).

  24. E. Hille, G. Szegö, and J. D. Tamarkin, “On some generalization of a theorem of A. Markoff,” Duke Math., 3, 729–739 (1937).

    Article  MathSciNet  Google Scholar 

  25. O. Lehto and K. I. Virtanen, Quasiconformal Mapping in the Plane, Springer, Berlin (1973).

    Book  Google Scholar 

  26. F. D. Lesley, “Hölder continuity of conformal mappings at the boundary via the strip method,” Indiana Univ. Math. J., 31, 341–354 (1982).

    Article  MathSciNet  Google Scholar 

  27. S. Rickman, “Characterization of quasiconformal arcs,” Ann. Acad. Sci. Fenn. Math., 395 (1966).

  28. Ch. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht, Göttingen (1975).

    MATH  Google Scholar 

  29. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, Berlin (1992).

    Book  Google Scholar 

  30. Ch. Pommerenke and S. E. Warschawski, “On the quantitative boundary behavior of conformal maps,” Comment. Math. Helv., 57, 107–129 (1982).

    Article  MathSciNet  Google Scholar 

  31. N. Stylianopoulos, “Strong asymptotics for Bergman polynomials over domains with corners and applications,” Const. Approxim., 38, 59–100 (2013).

    Article  MathSciNet  Google Scholar 

  32. K. V. Dzyadyk and I. A. Shevchuk, Theory of Uniform Approximation of Functions by Polynomials, Walter de Gruyter, Berlin (2008).

    MATH  Google Scholar 

  33. J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, American Mathematical Society, New York (1960).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Şimşek.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 5, pp. 583–595, May, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullayev, F.G., Abdullayev, G.A. & Şimşek, D. Bernstein–Walsh-Type Polynomial Inequalities in Domains Bounded by Piecewise Asymptotically Conformal Curve with Nonzero Inner Angles in the Bergman Space. Ukr Math J 71, 663–676 (2019). https://doi.org/10.1007/s11253-019-01669-w

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01669-w

Navigation