Skip to main content
Log in

\( {\mathcal{Z}}^{\ast } \)-Semilocal Modules and the Proper Class \( \mathrm{\mathcal{R}}\mathcal{S} \)

  • Published:
Ukrainian Mathematical Journal Aims and scope

Over an arbitrary ring, a module M is said to be \( {\mathcal{Z}}^{\ast } \)-semilocal if every submodule U of M has a \( {\mathcal{Z}}^{\ast } \) -supplement V in M, i.e., M = U + V and \( U\cap \kern0.5em V\subseteq {\mathcal{Z}}^{\ast }(V), \) where \( {\mathcal{Z}}^{\ast }(V)=\left\{m\in \left.V\right| Rm\kern0.5em \mathrm{is}\kern0.5em \mathrm{a}\kern0.5em \mathrm{small}\kern0.5em \mathrm{module}\right\} \) is the Rad-small submodule. We study basic properties of these modules regarded as a proper generalization of semilocal modules. In particular, we show that the class of \( {\mathcal{Z}}^{\ast } \) -semilocal modules is closed under submodules, direct sums, and factor modules. Moreover, we prove that a ring R is \( {\mathcal{Z}}^{\ast } \) -semilocal if and only if every injective left R-module is semilocal. In addition, we show that the class \( \mathrm{\mathcal{R}}\mathcal{S} \) of all short exact sequences \( \mathbbm{E}:0\to M\overset{\psi }{\to }N\overset{\phi }{\to }K\to 0 \) such that Im(ψ) has a \( {\mathcal{Z}}^{\ast } \) -semilocal in N is a proper class over left hereditary rings. We also study some homological objects of the proper class \( \mathrm{\mathcal{R}}\mathcal{S} \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alizade, E. Büyükaşık, and Y. Durgun, “Small supplements, weak supplements, and proper classes,” Hacet. J. Math. Stat., 45, No. 3, 449–461 (2016).

    MathSciNet  MATH  Google Scholar 

  2. R. Alizade, “Global dimension of some proper class,” Usp. Mat. Nauk, 1, 181–182 (1985).

    Google Scholar 

  3. R. Alizade, Y. M. Demirci, Y. Durgun, and D. Pusat, “The proper class generated by weak supplements,” Comm. Algebra, 42, 56–72 (2014).

    Article  MathSciNet  Google Scholar 

  4. D. A. Buchsbaum, “A note on homology in categories,” Ann. Math., 69, 66–74 (1959).

    Article  MathSciNet  Google Scholar 

  5. A. I. Generalov, The 𝜔-Cohigh Purity in Categories of Modules, Plenum, New York (1983).

    MATH  Google Scholar 

  6. F. Kasch, Modules and Rings, Academic Press, London (1982).

    MATH  Google Scholar 

  7. W. W. Leonard, “Small modules,” Proc. Amer. Math. Soc., 17, 527–531 (1966).

    Article  MathSciNet  Google Scholar 

  8. C. Lomp, “On semilocal modules and rings,” Comm. Algebra, 27, No. 4, 1921–1935 (1999).

    Article  MathSciNet  Google Scholar 

  9. S. Mac Lane, Homology, Academic Press, New York (1963).

    Book  Google Scholar 

  10. E. Mermut, Homological Approach to Complements and Supplements, PhD Thesis (2004).

  11. A. P. Misina and L. A. Skornjakov, Abelian Groups and Modules, Amer. Math. Soc. (1960).

    Google Scholar 

  12. R. J. Nunke, “Purity and subfunctors of the identity,” in: Topics in Abelian Groups: Proc. Symp., New Mexico State University, 3 (1963), pp. 121–171.

  13. A. Ç. Özcan, “Modules with small cyclic submodules in their injective hulls,” Comm. Algebra, 30, No. 4, 1575–1589 (2002).

    Article  MathSciNet  Google Scholar 

  14. R. Wisbauer, Foundations of Modules and Rings, Gordon & Breach (1991).

  15. H. Zöschinger, “Komplementierte moduln über Dedekindringen,” J. Algebra, 29, 42–56 (1974).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Türkmen.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 71, No. 3, pp. 400–411, March, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Türkmen, E. \( {\mathcal{Z}}^{\ast } \)-Semilocal Modules and the Proper Class \( \mathrm{\mathcal{R}}\mathcal{S} \). Ukr Math J 71, 455–469 (2019). https://doi.org/10.1007/s11253-019-01657-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01657-0

Navigation