Skip to main content
Log in

Limit Distributions for Conflict Dynamical System with Point Spectra

  • Published:
Ukrainian Mathematical Journal Aims and scope

We construct a model of conflict dynamical system whose limit states are associated with singular distributions. It is proved that a criterion for the appearance of point spectrum in the limit distribution is the strategy with fixed priority. In all other cases, the limit distributions are pure singular continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, et al., “Spectral properties of image measures under infinite conflict interactions,” Positivity, 10, 39–49 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Koshmanenko and N. Kharchenko, “Spectral properties of image measures after conflict interactions,” Theory Stochast. Process., 10(26), No. 3-4, 73–81 (2004).

  3. V. D. Koshmanenko and N. V. Kharchenko, “Invariant points of a dynamical system of conflict in the space of piecewise-uniformly distributed measures,” Ukr. Mat. Zh., 56, No. 7, 927–938 (2004); English translation : Ukr. Math. J., 56, No. 7, 1102–1116 (2004).

  4. S. Albeverio, V. Koshmanenko, and G. Torbin, “Fine structure of the singular continuous spectrum,” Methods Funct. Anal. Top., 9, No. 2, 101–119 (2003).

    MathSciNet  MATH  Google Scholar 

  5. S. Albeverio, V. Koshmanenko, M. Pratsiovytyi, et al., “On fine structure of singularly continuous probability measures and random variables with independent Ǭ-symbols,” Methods Funct. Anal. Top., 17, No. 2, 97–111 (2011).

    MathSciNet  MATH  Google Scholar 

  6. H. M. Torbin, “Multifractal analysis of singularly continuous probability measures,” Ukr. Mat. Zh., 57, No. 5, 706–720 (2005); English translation : Ukr. Math. J., 57, No. 5, 837–857 (2005).

  7. G. M. Torbin, “Fractal properties of the distributions of random variables with independent Q-symbols,” Trans. Nat. Pedagog. Univ. (Phys.-Math. Sci.), 3, 241–252 (2002).

    Google Scholar 

  8. V. D. Koshmanenko, “Full measure of a set of singular continuous measures,” Ukr. Mat. Zh., 61, No. 1, 83–91 (2009); English translation: Ukr. Math. J., 61, No. 1, 99–111 (2009).

  9. M. V. Bondarchuk, V. D. Koshmanenko, and N. V. Kharchenko, “Properties of the limit states of a dynamical conflict system,” Nelin. Kolyv., 7, No. 4, 446–461 (2004); English translation : Nonlin. Oscillat., 7, No. 4, 432–447 (2004).

  10. V. D. Koshmanenko, “Theorem on conflict for a pair of stochastic vectors,” Ukr. Mat. Zh., 55, No. 4, 555–560 (2003); English translation : Ukr. Math. J., 55, No. 4, 671–678 (2003).

  11. V. Koshmanenko, “The theorem of conflict for probability measures,” Math. Meth. Oper. Res., 59, No. 2, 303–313 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Albeverio, M. Bodnarchyk, and V. Koshmanenko, “Dynamics of discrete conflict interactions between nonannihilating opponents,” Meth. Funct. Anal. Top., 11, No. 4, 309–319 (2005).

    MATH  Google Scholar 

  13. V. Koshmanenko, Spectral Theory for Conflict Dynamical Systems [in Ukrainian], Naukova Dumka, Kyiv (2016).

    Google Scholar 

  14. T. Zamfirescu, “Most monotone functions are singular,” Amer. Math. Monthly, 88, 47–49 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  15. R. del Rio, S. Jitomirskaya, N. Makarov, et al., “Operators with singular continuous spectrum are generic,” Bull. Amer. Math. Soc., 31, 208–212 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Simon, “Operators with singular continuous spectrum: I. General operators,” Ann. Math., 141, 131–145 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Mandelbrot, Fractals: Form, Chance, and Dimension, Freeman & Co., San Francisco (1977).

    MATH  Google Scholar 

  18. M. F. Barnsley, Fractals Everywhere, Academic Press, Boston (1988).

    MATH  Google Scholar 

  19. M. F. Barnsley and S. Demko, “Iterated functional system and the global construction of fractals,” Proc. Roy. Soc. London A, 399, 243–275 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. J. Falconer, Fractal Geometry, Wiley, Chichester (1990).

    MATH  Google Scholar 

  21. J. E. Hutchinson, “Fractals and self-similarity,” Indiana Univ. Math. J., 30, 713–747 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Triebel, Fractals and Spectra Related to Fourier Analysis and Functional Spaces, Birkhäuser, Basel (1997).

    MATH  Google Scholar 

  23. A. F. Turbin and N. V. Pratsevityi, Fractal Sets, Functions, and Distributions [in Russian], Naukova Dumka, Kiev (1992).

    Google Scholar 

  24. M. V. Prats’ovytyi, Fractal Approach to the Investigation of Singular Distributions [in Ukrainian], National Pedagog. Univ., Kyiv (1998).

    Google Scholar 

  25. V. D. Koshmanenko, “Reconstruction of the spectral type of limiting distributions in dynamical conflict systems,” Ukr. Mat. Zh., 59, No. 6, 771–784 (2007); English translation : Ukr. Math. J., 59, No. 6, 841–857 (2007).

  26. T. Karataieva and V. Koshmanenko, “Origination of the singular continuous spectrum in the conflict dynamical systems,” Methods Funct. Anal. Topol., 14, No. 1, 309–319 (2009).

    MathSciNet  MATH  Google Scholar 

  27. V. D. Koshmanenko, “Quasipoint spectral measures in the theory of dynamical conflict systems,” Ukr. Mat. Zh., 63, No. 2, 187–199 (2011); English translation : Ukr. Math. J., 63, No. 2, 222–235 (2011).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 12, pp. 1615–1624, December, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koshmanenko, V.D., Voloshyna, V.O. Limit Distributions for Conflict Dynamical System with Point Spectra. Ukr Math J 70, 1861–1872 (2019). https://doi.org/10.1007/s11253-019-01614-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01614-x

Navigation