Skip to main content
Log in

A Remark on John–Nirenberg Theorem for Martingales

  • BRIEF COMMUNICATIONS
  • Published:
Ukrainian Mathematical Journal Aims and scope

The paper is mainly devoted to establishing an extension of the John–Nirenberg theorem for martingales. More precisely, let 1 < p < ∞ and 0 < q <. If the stochastic basis (Fn)n≥0 is regular, then BMOp,q = BMO1 with the equivalent norms. Our method is to use a new atomic decomposition construction of the martingale Hardy space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, London (2004).

  2. Z. Hao, “Atomic decomposition of predictable martingale Hardy space with variable exponents,” Czechoslovak Math. J., 65, No. 4, 1033–1045 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  3. Z. Hao and Y. Jiao, “Fractional integral on martingale Hardy spaces with variable exponents,” Fract. Calc. Appl. Anal., 18, No. 5, 1128–1145 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  4. Z. Hao and L. Li, “Grand martingale Hardy spaces,” Acta Math. Hungar., 153, No. 2, 417–429 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  5. K.-P. Ho, “Atomic decompositions, dual spaces, and interpolations of martingale Hardy–Lorentz–Karamata spaces,” Quart. J. Math., 65, No. 3, 985–1009 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Hong and T. Mei, “John–Nirenberg inequality and atomic decomposition for noncommutative martingales,” J. Funct. Anal., 263, No. 4, 1064–1097 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  7. Y. Jiao, L. Peng, and P. Liu, “Atomic decompositions of Lorentz martingale spaces and applications,” J. Funct. Spaces Appl., 7, No. 2, 153–166 (2009).

    Article  MathSciNet  Google Scholar 

  8. Y. Jiao, L. Wu, A. Yang, and R. Yi, “The predual and John–Nirenberg inequalities on generalized BMO martingale spaces,” Trans. Amer. Math. Soc., 369, No. 1, 537–553 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  9. Y. Jiao, G. Xie, and D. Zhou, “Dual spaces and John–Nirenberg inequalities of martingale Hardy–Lorentz–Karamata spaces,” Quart. J. Math., 66, 605–623 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  10. Y. Jiao, D. Zhou, Z. Hao, and W. Chen, “Martingale Hardy spaces with variable exponents,” Banach J. Math. Anal., 10, No. 4, 750–770 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Junge and M. Musat, “A noncommutative version of the John–Nirenberg theorem,” Trans. Amer. Math. Soc., 359, No. 1, 115–142 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Liu, Y. Hou, and M.Wang, “Weak Orlicz space and its applications to the martingale theory,” Sci. China Math., 53, No. 4, 905–916 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Long, Martingale Spaces and Inequalities, Peking Univ. Press, Beijing (1993).

  14. T. Miyamoto, E. Nakai, and G. Sadasue, “Martingale Orlicz–Hardy spaces,” Math. Nachr., 285, 670–686 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Peng and J. Li, “A generalization of Φ-moment martingale inequalities,” Statist. Probab. Lett., 102, 61–68 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Ren, “Marcinkiewicz type interpolation theorems for weak Orlicz martingale spaces and application,” Indag. Math. (N.S.), 26, No. 2, 384–392 (2015).

  17. F. Weisz, “Martingale Hardy spaces for 0 < p ≤ 1,” Probab. Theory Related Fields, 84, No. 3, 361–376 (1990).

  18. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier Analysis, Springer (1994).

  19. R. Yi, L. Wu, and Y. Jiao, “New John–Nirenberg inequalities for martingales,” Statist. Probab. Lett., 86, 68–73 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Wu, Z. Hao, and Y. Jiao, “John–Nirenberg inequalities with variable exponents on probability spaces,” Tokyo J. Math., 38, No. 2, 353–367 (2015).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Li.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 11, pp. 1571–1577, November, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L. A Remark on John–Nirenberg Theorem for Martingales. Ukr Math J 70, 1812–1820 (2019). https://doi.org/10.1007/s11253-019-01609-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-019-01609-8

Navigation