Skip to main content
Log in

Surfaces Generated by the Real and Imaginary Parts of Analytic Functions: A-Deformations that Occur Independently or Simultaneously

  • Published:
Ukrainian Mathematical Journal Aims and scope

It is proved that the surfaces generated by the real and imaginary parts of analytic functions admit nontrivial infinitesimal areal deformations of certain three types. The fields of displacements are explicitly expressed in all three cases. Given surfaces are rigid with respect to infinitesimal bendings of each type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Dzyadyk, “Geometric definition of analytic functions,” Usp. Mat. Nauk, 15, Issue 1(91), 191–194 (1960).

  2. A. W. Goodman, “On a characterization of analytic function,” Amer. Math. Mon., 71, No. 3, 265–267 (1964).

    Article  MathSciNet  Google Scholar 

  3. A. W. Goodman, “A partial differential equation and parallel plane curves,” Amer. Math. Mon., 71, No. 3, 257–264 (1964).

    Article  MathSciNet  Google Scholar 

  4. Yu. Yu. Trokhimchuk, “On one criterion of the analyticity of functions,” Ukr. Mat. Zh., 59, No. 10, 1410–1418 (2007); English translation: Ukr. Math. J., 59, No. 10, 1581–1590 (2007).

  5. Yu. Yu. Trokhimchuk and V. M. Safonov, “On one criterion of constancy of a complex function,” Ukr. Mat. Zh., 51, No. 8, 1096–1104 (1999); English translation: Ukr. Math. J., 51, No. 8, 1237–1245 (1999).

  6. R. Jerrard, “Curvatures of surfaces associated with holomorphic functions,” Colloq. Math., 21, No. 1, 127–132 (1970).

    Article  MathSciNet  Google Scholar 

  7. E. Kreyszig and A. Pendl, “Ü ber die Gauss Krümmung der Real und Imaginär—teilflächen analytischer Funktionen,” Elem. Math., 28, No. 1, 10–13 (1973).

    MathSciNet  MATH  Google Scholar 

  8. D. Kalaj and M. Mateljevic, “On quasiconformal harmonic surfaces with rectifiable boundary,” Complex Anal. Oper. Theory, 5, No. 3, 633–646 (2011).

    Article  MathSciNet  Google Scholar 

  9. P. Vincensini, “Sur le probl`eme des transformations équivalentes infinitésimales d’une surface, et ses relations avec la théorie de congruences de sphères,” Ann. Sci. Ecole Norm. Supér., 79, No. 4, 299–319 (1962).

    Article  MathSciNet  Google Scholar 

  10. B. Roger, Sur Quelques Propriétés Géométriques des Transformations Infinitésimales des Surfaces, These Doct. Sci. Math., Univ. Aix-Marseille (1961).

  11. R. Rosca, “Asupra transformărilor infinitezimale de dilatate superficială nulă din spatiul eliptic,” Stud. Cerc. Mat. Acad. RSR, 19, No. 2, 165–175 (1967).

    Google Scholar 

  12. V. A. Tikhonov, “On the infinitesimal p-bendings,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 7, 94–98 (1971).

  13. P. G. Kolobov, “On the infinitesimal deformations of a surface with preservation of the area,” Uch. Zap. Kabardino-Balkar. Univ., Ser. Mat., Issue 30, 65–68 (1966).

  14. L. L. Bezkorovaina, Areal Infinitesimal Deformations and Steady States of an Elastic Shell [in Ukrainian], AstroPrynt, Odesa (1999).

  15. R. Souam, “On stable constant mean curvature surfaces in S 2 × R and H 2 × R,Trans. Amer. Math. Soc., 362, No. 6, 2845–2857 (2010).

    Article  MathSciNet  Google Scholar 

  16. A. Hurtado, M. Ritore, and C. Rosales, “The classification of complete stable area-stationary surfaces in the Heisenberg group H 1 ,Adv. Math., 224, No. 2, 501–600 (2010).

    Article  Google Scholar 

  17. L. Qiu, “On a special class of prescribed scholar curvature problems with volume element preserving deformations,” Shuxue Wuli Xuebao, Ser. A, Acta Math. Sci., 31, No. 5, 1317–1322 (2011).

  18. D. Tian, G. Li, and Ch. Wu, “The surface area preserving mean curvature flow in quasi-Fuchsian manifolds,” Acta Math. Sci., B, 32, No. 6, 2191–2202 (2012).

  19. I. N. Vekua, Generalized Analytic Functions [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  20. A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  21. V. F. Kagan, Foundations of the Theory of Surfaces. Part 1 [in Russian], OGIZ, Moscow (1947).

  22. Yu. Yang, Ya. Yu, and H. Liu, “LinearWeingarten centroaffine translation surfaces in R 3 ,J. Math. Anal. Appl., 375, No. 2, 458–466 (2011).

    Article  MathSciNet  Google Scholar 

  23. L. É. Él’sgol’ts, Differential Equations and Variational Calculus [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  24. L. S. Velimirovic, M. D. Cvetkovic, M. S. Ciric, and N. Velimirovic, “Analysis of Gaudi surfaces at small deformations,” Appl. Math. Comput., 218, No. 13, 6999–7004 (2012).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 4, pp. 447–463, April, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezkorovainaya, L.L. Surfaces Generated by the Real and Imaginary Parts of Analytic Functions: A-Deformations that Occur Independently or Simultaneously. Ukr Math J 70, 513–531 (2018). https://doi.org/10.1007/s11253-018-1513-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1513-0

Navigation