Skip to main content
Log in

Application of Faber Polynomials in Proving Combinatorial Identities

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study the possibility of application of Faber polynomials in proving some combinatorial identities. It is shown that the coefficients of Faber polynomials of mutually inverse conformal mappings generate a pair of mutually invertible relations. We prove two identities relating the coefficients of Faber polynomials and the coefficients of Laurent expansions of the corresponding conformal mappings. Some examples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Riordan, Combinatorial Identities, Wiley, New York (1968).

    MATH  Google Scholar 

  2. H. W. Gould, Combinatorial Identities: A Standardized Set of Tables Listing 500 Binomial Coefficient Summations, Morgantown Printing & Binding Corporation, Morgantown (1972).

    MATH  Google Scholar 

  3. L. Comtet, Advanced Combinatorics, Reidel Publ. Comp., Dordrecht (1974).

    Book  Google Scholar 

  4. G. P. Egorychev, Integral Representation and Determination of Combinatorial Sums [in Russian], Nauka, Novosibirsk (1977).

    MATH  Google Scholar 

  5. J. Riordan, Combinatorial Identities [Russian translation], Nauka, Moscow (1982).

    Google Scholar 

  6. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics, Addison-Wesley Publ. Comp., Massachusetts (1994).

    MATH  Google Scholar 

  7. R. P. Stanley, Enumerative Combinatorics, Vol. 1, Cambridge Univ. Press, Cambridge (2012).

    MATH  Google Scholar 

  8. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Univ. Press, Cambridge (1999).

    Book  Google Scholar 

  9. J. Quaintance and H. W. Gould, Combinatorial Identities for Stirling Numbers, the Unpublished Notes of H. W. Gould, World Scientific, Singapore (2016).

    MATH  Google Scholar 

  10. I. M. Gessel and S. Ree, “Lattice paths and Faber polynomials,” in: Advances in Combinatorial Methods and Applications in Probability and Statistics, Birkh¨auser, Boston (1997), pp. 3–13.

    Chapter  Google Scholar 

  11. A. Bouali, “Faber polynomials, Cayley–Hamilton equation and Newton symmetric functions,” Bull. Sci. Math., 130, 49–70 (2006).

    Article  MathSciNet  Google Scholar 

  12. G.-S. Cheon, H. Kim, and L. W. Shapiro, “An algebraic structure for Faber polynomials,” Linear Algebra Appl., 433 1170–1179 (2010).

    Article  MathSciNet  Google Scholar 

  13. G.-S. Cheon, H. Kim, and L. W. Shapiro, “The hitting time subgroup, Lukasiewicz paths and Faber polynomials,” Eur. J. Combin., 32, 82–91 (2011).

    Article  Google Scholar 

  14. E. Jabotinsky, “Representation of functions by matrices. Application to Faber polynomials,” Proc. Amer. Math. Soc., 4, No. 4, 546–553 (1953).

    Article  MathSciNet  Google Scholar 

  15. J. Bartolomeo and M. He, “On Faber polynomials generated by an m-star,” Math. Comput., 62, No. 205, 277–287 (1994).

    MathSciNet  MATH  Google Scholar 

  16. M. X. He and E. B. Saff, “The zeros of Faber polynomials for an m-cusped hypocycloid,” J. Approxim. Theory, 78, 410–432 (1994).

    Article  MathSciNet  Google Scholar 

  17. M. He, “The Faber polynomials for m-fold symmetric domains,” J. Comput. App. Math., 54, 313–324 (1994).

    Article  MathSciNet  Google Scholar 

  18. M. He, “The Faber polynomials for circular lunes,” Comput. Math. Appl., 30, No. 3-6, 307–315 (1995).

    Article  MathSciNet  Google Scholar 

  19. M. He, “Explicit representations of Faber polynomials for m-cusped hypocycloids,” J. Approxim. Theory, 87, 137–147 (1996).

    Article  MathSciNet  Google Scholar 

  20. V. V. Savchuk, “Faber polynomials with common root,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 11, No. 3 (2014), pp. 214–227.

  21. P. G. Todorov, “Explicit formulas for the coefficients of Faber polynomials with respect to univalent functions of the class Σ,Proc. Amer. Math. Soc., 82, No. 3, 431–438 (1981).

    MathSciNet  MATH  Google Scholar 

  22. R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math., 5, No. 4, 329–359 (1996).

    Article  MathSciNet  Google Scholar 

  23. R. M. Corless, D. J. Jeffrey, and D. E. Knuth, “A sequence of series for the Lambert W function,” in: Proc. of the 1997 Internat. Symp. on Symbolic and Algebraic Computation, New York (1997), pp. 197–204.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 70, No. 2, pp. 151–164, February, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullaev, F.G., Imash-kyzy, M. & Savchuk, V.V. Application of Faber Polynomials in Proving Combinatorial Identities. Ukr Math J 70, 165–181 (2018). https://doi.org/10.1007/s11253-018-1493-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-018-1493-0

Navigation