Advertisement

Ukrainian Mathematical Journal

, Volume 69, Issue 11, pp 1835–1844 | Cite as

Approximation of Bergman Kernels by Rational Functions with Fixed Poles

  • S. O. Chaichenko
Article

We solve the problem of the best rational approximations of Bergman kernels on the unit circle in the complex plane in the quadratic and uniform metrics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Dzhrbashyan, “On the theory of Fourier series in rational functions,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 9, No. 7, 3–28 (1956).Google Scholar
  2. 2.
    M. M. Dzhrbashyan, “Orthogonal systems of rational functions on a circle,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 1, No. 1, 3–24 (1956).MathSciNetGoogle Scholar
  3. 3.
    M. M. Dzhrbashyan, “Orthogonal systems of rational functions on a circle,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 1, No. 2, 106–125 (1956).Google Scholar
  4. 4.
    M. M. Dzhrbashyan, “Decompositions in systems of rational functions with fixed poles,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 2, No. 1, 3–51 (1967).MathSciNetGoogle Scholar
  5. 5.
    J. L. Walsh, Interpolation and Approximation by Rational Functions in the Complex Domain, American Mathematical Society, Providence, RI (1960).zbMATHGoogle Scholar
  6. 6.
    V. V. Savchuk, “Best linear methods of approximation and optimal orthonormal systems of the Hardy space,” Ukr. Mat. Zh., 60, No. 5, 636–646 (2008); English translation : Ukr. Math. J., 60, No. 5, 730–743 (2008).Google Scholar
  7. 7.
    H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Springer, New York (2000).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. O. Chaichenko
    • 1
  1. 1.Donbas State Pedagogic UniversitySlov’yans’kUkraine

Personalised recommendations