Ukrainian Mathematical Journal

, Volume 69, Issue 11, pp 1805–1820 | Cite as

Type of Some Nuclear Subalgebras of the Toeplitz Algebra Generated by Inverse Subsemigroups of a Bicyclic Semigroup

  • K. H. Hovsepyan

We construct a ℤ-graded structure of the Toeplitz algebra and consider nuclear C * -subalgebras of the Toeplitz algebra generated by inverse subsemigroups of a bicyclic semigroup. The types of these algebras with respect to the Toeplitz algebra are determined. In addition, it is shown that the considered algebras are equipped with the structure of Hilbert C * -modules.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. A. Arzumanyan, “*-Representations of inverse semigroups,” Izv. Akad. Nauk. Arm. SSR, 218, 361–396 (1976).Google Scholar
  2. 2.
    L. A. Coburn, “The C*-algebra generated by an isometry,” Bull. Amer. Math. Soc., 73, 722–726 (1967).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    R. G. Douglas, “On the C*-algebra of a one-parameter semigroup of isometries,” Acta Math., 128, 143–152 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. J. Murphy, “Ordered groups and Toeplitz algebras,” J. Operator Theory, 18, 303–326 (1987).MathSciNetzbMATHGoogle Scholar
  5. 5.
    M. A. Aukhadiev and V. H. Tepoyan, “Isometric representations of totally ordered semigroups,” Lobachevskii J. Math., 33, No. 3, 239–243 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    G. J. Murphy, C*-Algebras and Operator Theory, Academic Press, Boston (1990).zbMATHGoogle Scholar
  7. 7.
    K. R. Davidson, C*-Algebras by Example, Fields Inst. Monographs 6, American Mathematical Society, Providence, RI (1996).Google Scholar
  8. 8.
    S. Y. Jang, “Uniqueness property of C*-algebras like the Toeplitz algebras,” Trends Math., 6, 29–32 (2003).MathSciNetGoogle Scholar
  9. 9.
    S. A. Grigoryan and A. F. Salakhutdinov, “C*-algebras generated by semigroups with cancellation,” Sib. Mat. Zh., 51, No. 1, 16–25 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    K. H. Hovsepyan, “On the C*-algebras generated by inverse subsemigroups of a bicyclic semigroup,” Izv. Nats. Akad. Nauk Armen., Ser. Mat., 49, No. 5, 67–75 (2014).MathSciNetzbMATHGoogle Scholar
  11. 11.
    E. V. Lipacheva and K. H. Hovsepyan, “Structure of subalgebras of the Toeplitz algebra fixed with respect to a finite group of automorphisms,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 6, 14–23 (2015).Google Scholar
  12. 12.
    K. H. Hovsepyan and E. V. Lipacheva, “The structure of invariant ideals of some subalgebras of Toeplitz algebra,” J. Contemp. Math. Anal., 50, No. 2, 70–79 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    K. H. Hovsepyan, “The C*-algebra \( {\mathcal{T}}_m \) as a crossed product,” Proc. Yerevan State Univ., Phys. Math. Sci., No. 3, 24–30 (2014).Google Scholar
  14. 14.
    E. V. Lipacheva and K. H. Hovsepyan, “Automorphisms of some subalgebras of the Toeplitz algebra,” Sib. Mat. Zh., 57, No. 3, 666–674 (2016).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    K. H. Hovsepyan, “Subalgebras of the Toeplitz algebra and the type of algebra,” Tr. Lobachevskii Mat. Tsentr., Issue 47, 136–138 (2013).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • K. H. Hovsepyan
    • 1
  1. 1.Idzhevan Branch, Yerevan State UniversityYerevanArmenia

Personalised recommendations