Advertisement

Ukrainian Mathematical Journal

, Volume 69, Issue 11, pp 1727–1748 | Cite as

Elliptic Problems with Boundary Conditions of Higher Orders in Hörmander Spaces

  • T. M. Kasirenko
  • O. O. Murach
Article
  • 11 Downloads

In a class of inner-product Hörmander spaces, we study a general elliptic problem for which the maximum order of boundary conditions is not lower than the order of the elliptic equation. The role of the order of regularity for these spaces is played by an arbitrary radial positive function RO-varying at infinity in a sense of Avakumović. We prove that the operator of the problem under investigation is bounded and Fredholm in the appropriate pairs of the indicated Hörmander spaces. A theorem on isomorphism generated by this operator is proved. For the generalized solutions of this problem, we establish a local a priori estimate and prove a theorem on the local regularity of these solutions in Hörmander spaces. As an application, we establish new sufficient conditions of continuity for given generalized derivatives of the solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Agranovich, “Elliptic boundary problems,” in: Encyclopedia of Mathematical Sciences, Vol. 79, Partial Differential Equations, IX, Springer, Berlin (1997), pp. 1–144.Google Scholar
  2. 2.
    S. G. Krein (editor), Functional Analysis [in Russian], Nauka, Moscow (1972).Google Scholar
  3. 3.
    L. Hörmander, Linear Partial Differential Operators, Springer, Berlin (1963).CrossRefzbMATHGoogle Scholar
  4. 4.
    J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, Dunod, Paris (1968).zbMATHGoogle Scholar
  5. 5.
    H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, VEB, Berlin (1978).Google Scholar
  6. 6.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. 2. Differential Operators with Constant Coefficients, Springer, Berlin (1983).Google Scholar
  7. 7.
    N. Jacob, Pseudodifferential Operators and Markov Processes, Vols. 1–3, Imperial College Press, London (2001), (2002), (2005).Google Scholar
  8. 8.
    V. A. Mikhailets and A. A. Murach, Hörmander Spaces, Interpolation, and Elliptic Problems, De Gruyter, Berlin (2014).CrossRefzbMATHGoogle Scholar
  9. 9.
    F. Nicola and L. Rodino, Global Pseudodifferential Calculus on Euclidean Spaces, Birkhäuser, Basel (2010).CrossRefzbMATHGoogle Scholar
  10. 10.
    B. Paneah, The Oblique Derivative Problem. The Poincaré Problem, Wiley, Berlin (2000).Google Scholar
  11. 11.
    H. Triebel, The Structure of Functions, Birkhäuser, Basel (2001).CrossRefzbMATHGoogle Scholar
  12. 12.
    V. A. Mikhailets and A. A. Murach, “Elliptic operators in a refined scale of functional spaces,” Ukr. Mat. Zh., 57, No. 5, 689–696 (2005); English translation: Ukr. Math. J., 57, No. 5, 817–825 (2005).Google Scholar
  13. 13.
    V. A. Mikhailets and A. A. Murach, “Improved scales of spaces and elliptic boundary-value problems. II,” Ukr. Mat. Zh., 58, No. 3, 352–370 (2006); English translation: Ukr. Math. J., 58, No. 3, 398–417 (2006).Google Scholar
  14. 14.
    V. A. Mikhailets and A. A. Murach, “Improved scales of spaces and elliptic boundary-value problems. III,” Ukr. Mat. Zh., 59, No. 5, 679–701 (2007); English translation: Ukr. Math. J., 59, No. 5, 744–765 (2007).Google Scholar
  15. 15.
    V. A. Mikhailets and A. A. Murach, “Regular elliptic boundary-value problem for a homogeneous equation in a two-sided improved scale of spaces,” Ukr. Mat. Zh.,58, No. 11, 1536–1555 (2006); English translation: Ukr. Math. J., 58, No. 11, 1748–1767 (2006).Google Scholar
  16. 16.
    V. A. Mikhailets and A. A. Murach, “Elliptic boundary-value problem in a two-sided improved scale of spaces,” Ukr. Math. Zh., 60, No. 4, 497–520 (2008); English translation: Ukr. Math. J., 60, No. 4, 574–597 (2008).Google Scholar
  17. 17.
    A. A. Murach, “Douglis–Nirenberg elliptic systems in the refined scale of spaces on a closed manifold,” Meth. Funct. Anal. Top., 14, No. 2, 142–158 (2008).MathSciNetzbMATHGoogle Scholar
  18. 18.
    V. A. Mikhailets and A. A. Murach, “The refined Sobolev scale, interpolation, and elliptic problems,” Banach J. Math. Anal., 6, No. 2, 211–281 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. Karamata, “Sur certains “Tauberian theorems” de M. M. Hardy et Littlewood,” Mathematica (Cluj), 3, 33–48 (1930).zbMATHGoogle Scholar
  20. 20.
    E. Seneta, Regularly Varying Functions, Springer, Berlin (1976).CrossRefzbMATHGoogle Scholar
  21. 21.
    N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Cambridge Univ. Press, Cambridge (1989).Google Scholar
  22. 22.
    A. A. Murach, “On elliptic systems in Hörmander spaces,” Ukr. Mat. Zh., 61, No. 3, 391–399 (2009); English translation: Ukr. Math. J., 61, No. 3, 467–477 (2009).Google Scholar
  23. 23.
    T. N. Zinchenko and A. A. Murach, “Douglis–Nirenberg elliptic systems in H¨ormander spaces,” Ukr. Mat. Zh., 64, No. 11, 1477–1491 (2012); English translation: Ukr. Math. J., 64, No. 11, 1672–1687 (2013).Google Scholar
  24. 24.
    T. N. Zinchenko and A. A. Murach, “Petrovskii elliptic systems in the extended Sobolev scale,” J. Math. Sci., 196, No. 5, 721–732 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    A. V. Anop and A. A. Murach, “Parameter-elliptic problems and interpolation with a function parameter,” Meth. Funct. Anal. Topol., 20, No. 2, 103–116 (2014).MathSciNetzbMATHGoogle Scholar
  26. 26.
    A. V. Anop and A. A. Murach, “Regular elliptic boundary-value problems in the extended Sobolev scale,” Ukr. Mat. Zh., 66, No. 7, 867–883 (2014); English translation: Ukr. Math. J., 66, No. 7, 969–985 (2014).Google Scholar
  27. 27.
    A. A. Murach and I. S. Chepurukhina, “Elliptic boundary-value problems in the sense of Lawruk on Sobolev and Hörmander spaces,” Ukr. Mat. Zh., 67, No. 5, 672–691 (2015); English translation: Ukr. Math. J., 67, No. 5, 764–784 (2015).Google Scholar
  28. 28.
    A. V. Anop and T. M. Kasirenko, “Elliptic boundary-value problems in Hörmander spaces,” Meth. Funct. Anal. Topol., 22, No. 4, 295–310 (2016).zbMATHGoogle Scholar
  29. 29.
    V. Los, V. A. Mikhailets, and A. A. Murach, “An isomorphism theorem for parabolic problems in Hörmander spaces and its applications,” Comm. Pure Appl. Anal., 16, No. 1, 69–97 (2017).zbMATHGoogle Scholar
  30. 30.
    V. Los and A. Murach, “Isomorphism theorems for some parabolic initial-boundary value problems in Hörmander spaces,” Open Math., 15, 57–76 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    V. G. Avakumović, “O jednom O-inverznom stavu,” Rad. Jugoslov. Akad. Znan. Umjet., 254, 167–186 (1936).Google Scholar
  32. 32.
    V. A. Mikhailets and A. A. Murach, “On elliptic operators on a closed manifold,” Dop. Nats. Akad. Nauk Ukr., No. 3, 13–19 (2009).Google Scholar
  33. 33.
    V. A. Mikhailets and A. A. Murach, “Extended Sobolev scale and elliptic operators,” Ukr. Mat. Zh., 65, No. 3, 392–404 (2013); English translation: Ukr. Math. J., 65, No. 3, 435–447 (2013).Google Scholar
  34. 34.
    V. A. Kozlov, V. G. Maz’ya, and J. Rossmann, Elliptic Boundary Value Problems in Domains with Point Singularities, American Mathematical Society, Providence, RI (1997).Google Scholar
  35. 35.
    W. Matuszewska, “On a generalization of regularly increasing functions,” Stud. Math., 24, 271–279 (1964).MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    I. S. Chepurukhina, “Lawruk elliptic boundary-value problems in the extended Sobolev scale,” in: Differential Equations and Related Problems [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 12, No. 2 (2015), pp. 338–374.Google Scholar
  37. 37.
    L. R. Volevich and B. P. Paneyakh, “Some spaces of generalized functions and embedding theorems,” Usp. Mat. Nauk, 20, No. 1, 3–74 (1965).MathSciNetzbMATHGoogle Scholar
  38. 38.
    V. A. Mikhailets and A. A. Murach, “Interpolation Hilbert spaces between Sobolev spaces,” Results Math., 67, No. 1, 135–152 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    L. Hörmander, The Analysis of Linear Partial Differential Operators. Vol. 3. Pseudo-Differential Operators, Springer, Berlin (1985).Google Scholar
  40. 40.
    S. Agmon, A. Douglas, and L. Nirenberg, Estimations Near the Boundary for Solutions of Elliptic Partial Differential Equations Satisfying General Boundary Conditions. I, Interscience, New York (1959).Google Scholar
  41. 41.
    Ya. A. Roitberg, Elliptic Boundary-Value Problems in the Spaces of Distributions, Kluwer AP, Dordrecht (1996).Google Scholar
  42. 42.
    G. Eskin, Lectures on Linear Partial Differential Equations, American Mathematical Society, Providence, RI (2011).Google Scholar
  43. 43.
    B. R. Vainberg and V. V. Grushin, “On uniformly nonelliptic problems. II,” Mat. Sb., 73(115), No. 4, 126–154 (1967).Google Scholar
  44. 44.
    C. Foiaş and J.-L. Lions, “Sur certains théorèmes d’interpolation,” Acta Sci. Math. Szeged, 22, No. 3–4, 269–282 (1961).Google Scholar
  45. 45.
    J. Peetre, “On interpolation functions. II,” Acta Sci. Math. Szeged, 29, No. 1–2, 91–92 (1968).MathSciNetzbMATHGoogle Scholar
  46. 46.
    V. I. Ovchinnikov, “The methods of orbits in interpolation theory,” Math. Rep., 1, No. 2, 349–515 (1984).MathSciNetGoogle Scholar
  47. 47.
    I. Ts. Gokhberg and M. G. Krein, “Main statements on the defect numbers, root vectors, and indices of linear operators,” Usp. Mat. Nauk, 12, No. 2, 43–118 (1957).zbMATHGoogle Scholar
  48. 48.
    J. Peetre, “Another approach to elliptic boundary problems,” Comm. Pure Appl. Math., 14, No. 4, 711–731 (1961).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • T. M. Kasirenko
    • 1
  • O. O. Murach
    • 1
    • 2
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine
  2. 2.Chernihiv National Pedagogic UniversityChernihivUkraine

Personalised recommendations