Advertisement

Ukrainian Mathematical Journal

, Volume 69, Issue 11, pp 1673–1688 | Cite as

Two-Weighted Inequalities for the Riesz Potential in p-Convex Weighted Modular Banach Function Spaces

  • R. A. Bandaliyev
  • V. S. Guliyev
  • S. G. Hasanov
Article
  • 19 Downloads

We prove the property of two-weight boundedness for the Riesz potential from one weighted Banach function space to another weighted Banach function space. In particular, we establish the two-weight boundedness for the Riesz potential and determine sufficient conditions on weights for the boundedness of the Riesz potential in weighted Musielak–Orlicz spaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Bandaliev, “On an inequality in Lebesgue space with mixed norm and with variable summability exponent,” Math. Notes, 84, No. 3, 303–313 (2008) (correction in Math. Notes, 99, No. 2, 319–320 (2016)).Google Scholar
  2. 2.
    R. A. Bandaliev, “The boundedness of certain sublinear operator in the weighted variable Lebesgue spaces,” Czechoslovak Math. J., 60, No. 2, 327–337 (2010) (corrections in Czechoslovak Math. J., 63, No. 4, 1149–1152 (2013)).Google Scholar
  3. 3.
    R. A. Bandaliev, “The boundedness of multidimensional Hardy operator in the weighted variable Lebesgue spaces,” Lith. Math. J., 50, No. 3, 249–259 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    R. A. Bandaliev and K. K. Omarova, “Two-weight norm inequalities for certain singular integrals,” Taiwanese J. Math., 16, No. 2, 713–732 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    R. A. Bandaliev, “On Hardy-type inequalities in weighted variable Lebesgue space L p(x), for 0 < p(x) < 1,” Eurasian Math. J., 4, 5–16 (2013).MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. A. Bandaliev, “Criteria of two-weighted inequalities for multidimensional Hardy type operator in weighted Musielak–Orlicz spaces and some application,” Math. Stat., 1, No. 3, 144–156 (2013).MathSciNetGoogle Scholar
  7. 7.
    R. A. Bandaliev, “On the two-weight boundedness of multidimensional Hardy operator in p-convex Banach function spaces and some applications,” Ukr. Math. J., 67, No. 3, 357–371 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    C. Bennett and R. Sharpley, “Interpolation of operators,” Pure Appl. Math., 129 (1988).Google Scholar
  9. 9.
    E. I. Berezhnoi, “Sharp estimates of operators on the cones of ideal spaces,” Proc. Steklov Inst. Math., 204, 3–36 (1994).MathSciNetGoogle Scholar
  10. 10.
    E. I. Berezhnoi, “Two-weighted estimations for the Hardy–Littlewood maximal function in ideal Banach spaces,” Proc. Amer. Math. Soc., 127, 79–87 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    S. Bloom and R. Kerman, “Weighted L Φ integral inequalities for operators of Hardy type,” Studia Math., 110, No. 1, 35–52 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Bradley, “Hardy inequalities with mixed norms,” Canad. Math. Bull., 21, 405–408 (1978).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    A. Cianchi, “Hardy inequalities in Orlicz spaces,” Trans. Amer. Math. Soc., 351, 2459–2478 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. A. Cochran and C. S. Lee, “Inequalities related to Hardy’s and Heinig’s,” Math. Proc. Cambridge Phil. Soc., 96, 1–7 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, “The maximal function on variable L p spaces,” Ann. Acad. Sci. Fenn. Math., 28, No. 1, 223–238 (2003) (corrections in Ann. Acad. Sci. Fenn. Math., 29, No. 2, 247–249 (2004)).Google Scholar
  16. 16.
    D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Perez, “The boundedness of classical operators on variable L p spaces,” Ann. Acad. Sci. Fenn. Math., 31, 239–264 (2006).MathSciNetzbMATHGoogle Scholar
  17. 17.
    D. Cruz-Uribe and F. I. Mamedov, “On a general weighted Hardy type inequality in the variable exponent Lebesgue spaces,” Rev. Mat. Complut., 25, No. 2, 335–367 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    D. Cruz-Uribe and A. Fiorenza, “Variable Lebesgue spaces,” Found. Harmon. Anal., Ser. Appl. Numer. Harmon. Anal. (2013).Google Scholar
  19. 19.
    L. Diening and S. Samko, “Hardy inequality in variable exponent Lebesgue spaces,” Fract. Calc. Appl. Anal., 10, No. 1, 1–18 (2007).MathSciNetzbMATHGoogle Scholar
  20. 20.
    L. Diening, P. Harjulehto, P. Hasto, and M. Ruzicka, “Lebesgue and Sobolev spaces with variable exponents,” Springer Lect. Notes, 2017 (2011).Google Scholar
  21. 21.
    D. E. Edmunds, V. Kokilashvili, and A. Meskhi, “On the boundedness and compactness of weighted Hardy operators in spaces L p(x),” Georgian Math. J., 12, No. 1, 27–44 (2005).MathSciNetzbMATHGoogle Scholar
  22. 22.
    V. S. Guliev, “Two-weight inequalities for integral operators in L p-spaces and their applications,” Proc. Steklov Inst. Math., 204, 97–116 (1994).zbMATHGoogle Scholar
  23. 23.
    G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press (1988).Google Scholar
  24. 24.
    P. Harjulehto, P. Hasto, and M. Koskenoja, “Hardy’s inequality in a variable exponent Sobolev space,” Georgian Math. J., 12, No. 1, 431–442 (2005).MathSciNetzbMATHGoogle Scholar
  25. 25.
    H. P. Heinig, “Some extensions of inequalities,” J. SIAM Math. Anal., 6, 698–713 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    P. Jain, L. E. Persson, and A. Wedestig, “From Hardy to Carleman and general mean-type inequalities, in: Function Spaces and Applications, CRC Press, New York, etc. (2000), pp. 117–130.Google Scholar
  27. 27.
    P. Jain, L. E. Persson, and A. Wedestig, “Carleman–Knopp type inequalities via Hardy’s inequality,” Math. Inequal. Appl., 4, No. 3, 343–355 (2001).MathSciNetzbMATHGoogle Scholar
  28. 28.
    K. Knopp, “Uber Reihen mit positiven Gliedern,” J. Lond. Math. Soc. (2), 3, 205–211 (1928).MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    T. S. Kopaliani, “On some structural properties of Banach function spaces and boundedness of certain integral operators, Czechoslovak Math. J., 54, No. 129, 791–805 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    M. Krbec, B. Opic, L. Pick, and J. Rakosnik, “Some recent results on Hardy type operators in weighted function spaces and related topics, in: Function Spaces, Differential Operators, and Nonlinear Analysis, Teubner, Stuttgart (1993), pp. 158–184.Google Scholar
  31. 31.
    A. Kufner and L. E. Persson, Integral Inequalities with Weights, World Scientific Publ., Singapore (2002).zbMATHGoogle Scholar
  32. 32.
    J. Lindenstrauss and L. Tzafriri, “Classical Banach spaces II,” Ergeb. Math. Grenzgeb. (3), 97 (1979).Google Scholar
  33. 33.
    E. Lomakina and V. Stepanov, “On the Hardy-type integral operator in Banach function spaces,” Publ. Mat., 42, 165–194 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    E. R. Love, “Inequalities related to those of Hardy and of Cochran and Lee,” Math. Proc. Cambridge Philos. Soc., 99, 395–408 (1986).MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    W. A. J. Luxemburg, Banach Function Spaces: Thesis, Delfi (1955).Google Scholar
  36. 36.
    F. I. Mamedov and A. Harman, “On a weighted inequality of Hardy type in spaces L p(·),” J. Math. Anal. Appl., 353, No. 2, 521–530 (2009).MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    R. A. Mashiyev, B. Cekic, F. I. Mamedov, and S. Ogras, “Hardy’s inequality in power-type weighted L p(·)(0,∞) spaces,” J. Math. Anal. Appl., 334, No. 1, 289–298 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    V. G. Maz’ya, Sobolev Spaces, Springer-Verlag, Berlin (1985).zbMATHGoogle Scholar
  39. 39.
    B. Muckenhoupt, “Hardy’s inequality with weights,” Studia Math., 44, 31–38 (1972).MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    J. Musielak, “Orlicz spaces and modular spaces,” Lect. Notes Math., 1034 (1983).Google Scholar
  41. 41.
    L. Quinsheng, “Two weight Φ-inequalities for the Hardy operator, Hardy–Littlewood maximal operator, and fractional integrals,” Proc. Amer. Math. Soc., 118, No. 1, 129–142 (1993).MathSciNetCrossRefGoogle Scholar
  42. 42.
    A. Schep, “Minkowski’s integral inequality for function norms,” Oper. Theory: Adv. Appl., 75, 299–308 (1995).MathSciNetzbMATHGoogle Scholar
  43. 43.
    G. Tomaselli, “A class of inequalities,” Boll. Unione Mat. Ital., 2, 622–631 (1969).MathSciNetzbMATHGoogle Scholar
  44. 44.
    A. Wedestig, “Some new Hardy type inequalities and their limiting inequalities,” J. Inequal. Pure Appl. Math., 61, No. 4, 1–33 (2003).MathSciNetzbMATHGoogle Scholar
  45. 45.
    Y. Zeren and V. S. Guliyev, “Two-weight norm inequalities for some anisotropic sublinear operators,” Turkish Math. J., 30, 329–355 (2006).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • R. A. Bandaliyev
    • 1
  • V. S. Guliyev
    • 2
  • S. G. Hasanov
    • 3
  1. 1.Institute of Mathematics and MechanicsAzerbaijan National Academy of SciencesBakuAzerbaijan
  2. 2.Ahi Evran University, Kirsehir, Turkey; Institute of Mathematics and MechanicsNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  3. 3.Ganja State UniversityGanjaAzerbaijan

Personalised recommendations