Skip to main content
Log in

Favard–Amerio Theory for Almost Periodic Functional-Differential Equations Without Using the ℋ-Classes of These Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

The Favard–Amerio theory is constructed for almost periodic functional-differential equations in Banach spaces without using the ℋ-classes of these equations. For linear equations, we present the first example of an almost periodic operator, which has no analogs in the classical Favard–Amerio theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bochner, “Beitrage zur Theorie der fastperiodischen. I Teil,” Math. Ann., 96, 119–147 (1927); “Beitrage zur Theorie der fastperiodischen. II Teil,” Math. Ann., 96, 383–409 (1927).

  2. B. M. Levitan, Almost Periodic Functions [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  3. B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  4. É. Mukhamadiev, “On the invertibility of functional operators in the space of functions bounded on the axis,” Mat. Zametki, 11, No. 3, 269–274 (1972).

    MathSciNet  Google Scholar 

  5. V. Yu. Slyusarchuk, “Almost periodic solutions of nonlinear discrete systems that can be not almost periodic in Bochner’s sense,” Nelin. Kolyv., 17, No. 3, 407–418 (2014); English translation: J. Math. Sci., 212, No. 3, 335–348 (2016).

  6. L. É. Él’sgol’ts and S. B. Norkin, Introduction to the Theory of Differential Equations with Deviating Argument [in Russian], Nauka, Moscow (1971).

    MATH  Google Scholar 

  7. L. Amerio, “Soluzioni quasiperiodiche, o limital, di sistemi differenziali non lineari quasi-periodici, o limitati,” Ann. Mat. Pura Appl., 39, 97–119 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  8. A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis [in Ukrainian], Vyshcha Shkola, Kyiv (1974).

    Google Scholar 

  9. G. A. Sukhomlinov, “On the extension of linear functionals in complex and quaternion linear spaces,” Mat. Sb., 3, 353–358 (1938).

    Google Scholar 

  10. V. E. Slyusarchuk, “Bounded and periodic solutions of nonlinear functional-differential equations,” Mat. Sb., 203, No. 5, 135–160 (2012).

    Article  MATH  MathSciNet  Google Scholar 

  11. V. E. Slyusarchuk, “Invertibility of almost periodic c-continuous functional operators,” Mat. Sb., 116, No. 4, 483–501 (1981).

    MATH  MathSciNet  Google Scholar 

  12. V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators,” Mat. Sb., 130, No. 1, 86–104 (1986).

    MathSciNet  Google Scholar 

  13. V. E. Slyusarchuk, “Necessary and sufficient conditions for the invertibility of nonautonomous functional-differential operators,” Mat. Zametki, 42, No. 2, 262–267 (1987).

    MATH  MathSciNet  Google Scholar 

  14. V. Yu. Slyusarchuk, “Conditions of almost periodicity for bounded solutions of nonlinear difference equations with continuous argument,” Nelin. Kolyv., 16, No. 1, 118–124 (2013); English translation: J. Math. Sci., 197, No. 1, 122–128 (2014).

  15. V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear differential equations in Banach spaces,” Ukr. Mat. Zh., 65, No. 2, 307–312 (2013); English translation: Ukr. Math. J., 65, No. 2, 341–347 (2014).

  16. V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument,” Nelin. Kolyv., 16, No. 3, 416–425 (2013); English translation: J. Math. Sci., 201, No. 3, 391–399 (2014).

  17. V. Yu. Slyusarchuk, “Conditions for almost periodicity of bounded solutions of nonlinear differential equations unsolved with respect to the derivative,” Ukr. Mat. Zh., 66, No. 3, 384–393 (2014); English translation: Ukr. Math. J., 66, No. 3, 432–442 (2014).

  18. V. Yu. Slyusarchuk, “Almost periodic solutions of difference equations with discrete argument on metric space,” Miskolc Math. Notes, 15, No. 1, 211–215 (2014).

    MATH  MathSciNet  Google Scholar 

  19. V. E. Slyusarchuk, “Investigation of nonlinear almost periodic differential equations without using the ℋ-classes of these equations,” Mat. Sb., 205, No. 6, 139–160 (2014).

    Article  Google Scholar 

  20. V. E. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations in Banach spaces,” Mat. Zametki, 97, No. 2, 277–285 (2015).

    Article  MathSciNet  Google Scholar 

  21. V. Yu. Slyusarchuk, “Periodic and almost periodic solutions of difference equations in metric spaces,” Nelin. Kolyv., 18, No. 1, 112–119 (2015); English translation: J. Math. Sci., 215, No. 3, 387–394 (2016).

  22. V. Yu. Slyusarchuk, “Almost periodic solutions of nonlinear equations that are not necessarily almost periodic in Bochner’s sense,” Ukr. Mat. Zh., 67, No. 2, 230–244 (2015); English translation: Ukr. Math. J., 67, No. 2, 267–282 (2015).

  23. V. Yu. Slyusarchuk, “A criterion for the existence of almost periodic solutions of nonlinear differential equations with impulsive perturbation,” Ukr. Mat. Zh., 67, No. 6, 838–848 (2015); English translation: Ukr. Math. J., 67, No. 6, 948–959 (2015).

  24. V. Yu. Slyusarchuk, “Almost periodic and Poisson stable solutions of difference equations in metric spaces,” Ukr. Mat. Zh., 67, No. 12, 1707–1714 (2015); English translation: Ukr. Math. J., 67, No. 12, 1932–1940 (2016).

  25. V. Yu. Slyusarchuk, “Almost periodic solutions of functional equations,” Nelin. Kolyv., 19, No. 1, 142–148 (2016); English translation: J. Math. Sci., 222, No. 3, 359–365 (2017).

  26. V. E. Slyusarchuk, “Almost periodic solutions of discrete equations,” Izv. Ros. Akad. Nauk, Ser. Mat., 80, No. 2, 125–138 (2016).

    Article  MathSciNet  Google Scholar 

  27. J. Favard, “Sur les équations différentielles á coefficients presquepériodiques,” Acta Math., 51, 31–81 (1927).

    Article  MATH  Google Scholar 

  28. L. Amerio, “Sull equazioni differenziali quasi-periodiche astratte,” Ric. Mat., 30, 288–301 (1960).

    MATH  Google Scholar 

  29. V. V. Zhikov, “Proof of the Favard theorem on the existence of an almost periodic solution in the case of an arbitrary Banach space,” Mat. Zametki, 23, No. 1, 121–126 (1978).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 6, pp. 788–802, June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slyusarchuk, V.Y. Favard–Amerio Theory for Almost Periodic Functional-Differential Equations Without Using the ℋ-Classes of These Equations. Ukr Math J 69, 916–932 (2017). https://doi.org/10.1007/s11253-017-1404-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1404-9

Navigation