Skip to main content

Advertisement

Log in

On the Moduli of Continuity and Fractional-Order Derivatives in the Problems of Best Mean-Square Approximation by Entire Functions of the Exponential Type on the Entire Real Axis

  • Published:
Ukrainian Mathematical Journal Aims and scope

The exact Jackson-type inequalities with modules of continuity of a fractional order β ∈ (0, ∞) are obtained on the classes of functions defined via the derivatives of a fractional order α ∈ (0, ∞) for the best approximations by entire functions of the exponential type in the space L 2(ℝ). In particular, we prove the inequality \( {2}^{-\beta /2}{\sigma}^{-\alpha }{\left(1-\cos t\right)}^{-\beta /2}\le \sup \left\{{A}_{\sigma }(f)/{\omega}_{\beta}\left({D}^{\alpha }f,t/\sigma \right):f\in {L}_2^{\alpha}\left(\mathbb{R}\right)\right\}\le {\sigma}^{-\alpha }{\left(1/{t}^2+1/2\right)}^{\beta /2} \), where β ∈ [1, ∞), t ∈ (0, π], and σ ∈ (0, ∞). We also determined the exact values of various mean 𝜈 -widths of the classes of functions determined via the fractional modules of continuity and majorants satisfying certain conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. L. Butzer and U. Westphal, “An access to fractional differentiation via fractional difference quotients,” in: Dold and Eckmann (editors), Fractional Calculus and Its Applications, Lecture Notes in Mathematics, 457, Springer, Berlin (1975), pp. 116–145.

  2. P. L. Butzer, H. Dyckhoff, E. Gorlich, and R. L. Stens, “Best trigonometric approximation, fractional order derivatives and Lipschitz classes,” Can. J. Math., l29, No. 4, 781–793 (1977).

  3. R. Taberski, “Differences, moduli and derivatives of fractional orders,” Comment. Math., 19, 389–400 (1976–1977).

  4. K. G. Ivanov, “On the rates of convergence of two moduli of functions,” Pliska Stud. Math. Bulg., 5, 97–104 (1983).

    MATH  MathSciNet  Google Scholar 

  5. Ya. S. Bugrov, “Fractional difference operators and classes of functions,” in: Proc. of the Internat. Conf. on Approximation Theory of Functions [in Russian], Akad. Nauk SSSR, Moscow (1987), pp. 75–78.

  6. V. G. Ponomarenko, “Moduli of smoothness of fractional order and the best approximations in L p (1 < p < ∞),” in: Proc. of the Internat. Conf. on the Constructive Theory of Functions, Sofia (1983), pp. 129–133.

  7. S. G. Samko and A. Ya. Yakubov, “Zygmund estimate for the moduli of continuity of fractional order for a conjugate function,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No.12, 49–53 (1985).

  8. G. Gaimnazarov, “On the moduli of continuity of fractional order for functions given on the entire real axis,” Dokl. Akad. Nauk Tadzh. SSR, 24, No. 3, 148–150 (1981).

    MathSciNet  Google Scholar 

  9. G. Gaimnazarov, “Some relations for the moduli of continuity of fractional order in the space L p (,∞),Izv. Akad. Nauk Tadzh. SSR, Otd. Fiz.-Mat., Khim., Geol. Nauk, No. 3, 8–13 (1985).

  10. S. G. Samko, A. A. Kilbas, and O. I. Marichev, Integrals and Derivatives of Fractional Order and Some Their Applications [in Russian], Nauka Tekhnika, Minsk (1987).

  11. P. L. Butzer and U. Westphal, “An introduction to fractional calculus,” in: Application Fractional Calculus in Physics, World Scientific Publ., Singapore (2000), pp. 1–85.

  12. Ya. I. Khurgin and V. P. Yakovlev, Finite Functions in Physics and Engineering [in Russian], Nauka, Moscow (1971).

  13. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Nauka, Moscow (1971).

  14. O. V. Besov and S. B. Stechkin, “Description of the moduli of continuity in L 2 ,Tr. Mat. Inst. Akad. Nauk SSSR, 134, 23–25 (1975).

  15. L. V. Taikov, “Structural and constructive characteristics of functions from L 2 ,Mat. Zametki, 25, No. 2, 217–223 (1979).

    MATH  MathSciNet  Google Scholar 

  16. V. N. Sachkov, Introduction to Combinatorial Methods of Discrete Mathematics [in Russian], Nauka, Moscow (1982).

  17. A. F. Timan, Approximation Theory of Functions of Real Variable [in Russian], Fizmatgiz, Moscow (1960).

  18. S. N. Bernstein, “On the best approximation of continuous functions on the entire real axis via entire functions of given power,” in: Collection of Works [in Russian], Vol. 2, Akad. Nauk SSSR, Moscow (1952), pp. 371–375.

  19. N. I. Akhiezer, Lectures on Approximation Theory [in Russian], Gostekhizdat, Moscow (1947).

  20. S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1977).

  21. I. I. Ibragimov and F. G. Nasibov, “On the estimation of the best approximation of a summable function on the real axis via entire functions of finite power,” Dokl. Akad. Nauk SSSR, 194, No. 5, 1013–1016 (1970).

    MATH  MathSciNet  Google Scholar 

  22. V. Yu. Popov, “On the best mean-square approximations by entire functions of exponential type,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 6, 65–73 (1972).

  23. V. V. Arestov, “On Jackson inequalities for the approximation in L 2 of periodic functions by trigonometric polynomials and of functions on the line by entire functions,” in: Approximation Theory: A Volume Dedicated to Borislav Bojanov, Marin Drinov Academic Publ. House, Sofia (2004), pp. 1–19.

  24. A. G. Babenko, “Exact Jackson–Stechkin inequality in the space L 2(ℝm),Proc. of the Institute of Mathematics and Mechanics, Ural Division of the Russian Academy of Sciences [in Russian], No. 5 (1998), pp. 3–7.

  25. A. I. Stepanets, “Classes of functions defined on the real line and their approximations by entire functions. I,” Ukr. Mat. Zh., 42, No. 1, 102–112 (1990); English translation : Ukr. Math. J., 42, No. 1, 93–102 (1990).

  26. A. I. Stepanets, “Classes of functions defined on the real axis and their approximations by entire functions. II,” Ukr. Mat. Zh., 42, No. 2, 210–222 (1990); English translation : Ukr. Math. J., 42, No. 2, 186–197 (1990).

  27. A. A. Ligun and V. G. Doronin, “Exact constants in Jackson-type inequalities for L 2-approximation on an axis,” Ukr. Math. J., 61, No. 1, 92–98 (2009); English translation : Ukr. Math. J., 61, No. 1, 112–120 (2009).

  28. S. B. Vakarchuk, “Exact constant in an inequality of Jackson type for L2-approximation on the line and exact values of mean widths of functional classes,” East J. Approxim., 10, No. 1-2, 27–39 (2004).

    MATH  Google Scholar 

  29. S. B. Vakarchuk, “On some extremal problems of approximation theory of functions on the real axis. I,” J. Math. Sci., 188, No. 2, 146–166 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  30. S. B. Vakarchuk, “Best mean-square approximation of functions defined on the real axis by entire functions of exponential type,” Ukr. Mat. Zh., 64, No. 5, 604–615 (2012); English translation : Ukr. Math. J., 64, No. 5, 680–692 (2012).

  31. S. B. Vakarchuk, “Jackson-type inequalities for the special moduli of continuity on the entire real axis and the exact values of mean 𝜈-widths for the classes of functions in the space L 2(ℝ),Ukr. Mat. Zh., 66, No. 6, 740–766 (2014); English translation : Ukr. Math. J., 66, No. 6, 827–856 (2014).

  32. S. B. Vakarchuk, “Best mean-square approximations by entire functions of exponential type and mean 𝜈-widths for the classes of functions on a straight line,” Mat. Zametki, 96, No. 6, 827–848 (2014).

    Article  Google Scholar 

  33. S. B. Vakarchuk, M. Sh. Shabozov, and M. R. Langarshoev, “On the best mean-square approximations by entire functions of exponential type in L 2(ℝ) and mean 𝜈-widths for some function classes,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 7, 1–19 (2014).

  34. G. G. Magaril-Il’yaev, “Mean dimension, widths, and optimal restoration of Sobolev classes of functions on a straight line,” Mat. Sb., 182, No. 11, 1635–1656 (1991).

    Google Scholar 

  35. G. G. Magaril-Il’yaev, “Mean dimension and widths for the classes of functions on a straight line,” Dokl. Akad. Nauk SSSR, 318, No. 1, 35–38 (1991).

    MATH  Google Scholar 

  36. L. V. Taikov, “Inequalities containing the best approximations and the modulus of continuity of functions,” Mat. Zametki, 20, No. 3, 433–438 (1976).

    MATH  MathSciNet  Google Scholar 

  37. V. M. Tikhomirov, “On the approximating characteristics of smooth functions of many variables,” in: Theory of Cubature Formulas and Numerical Mathematics [in Russian], Nauka, Novosibirsk (1980), pp. 183–188.

  38. S. B. Vakarchuk, “On some extremal problems of the approximation theory of functions on the real axis. II,” J. Math. Sci., 190, No. 4, 613–630 (2013).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 5, pp. 599–623, May, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakarchuk, S.B. On the Moduli of Continuity and Fractional-Order Derivatives in the Problems of Best Mean-Square Approximation by Entire Functions of the Exponential Type on the Entire Real Axis. Ukr Math J 69, 696–724 (2017). https://doi.org/10.1007/s11253-017-1389-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1389-4

Navigation