Advertisement

Ukrainian Mathematical Journal

, Volume 69, Issue 2, pp 331–336 | Cite as

Groups All Cyclic Subgroups of Which are BNA-Subgroups

  • X. He
  • S. Li
  • Y. Wang
Article
  • 33 Downloads

Suppose that G is a finite group and H is a subgroup of G. We say that H is a BNA-subgroup of G if either H x = H or x ∈ <H, H x > for all xG. The BNA-subgroups of G are between normal and abnormal subgroups of G. We obtain some new characterizations for finite groups based on the assumption that all cyclic subgroups are BNA-subgroups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Huppert, Endliche Gruppen I, Springer, Berlin, etc. (1967).Google Scholar
  2. 2.
    A. Fattahi, “Groups with only normal and abnormal subgroups,” J. Algebra, 28, No. 1, 15–19 (1974).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    G. Ebert and S. Bauman, “A note on subnormal and abnormal chains,” J. Algebra, 36, No. 2, 287–293 (1975).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Cuccia and M. Liotta, “A condition on the minimal subgroups of a finite group,” Boll. Unione Mat. Ital., 1, No. 6, 303–308 (1982).MathSciNetGoogle Scholar
  5. 5.
    J. Liu, S. Li, and J. He, “CLT-groups with normal or abnormal subgroups,” J. Algebra, 362, 99–106 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    X. He, S. Li, and Y. Wang, “On BNA-normality and solvability of finite groups,” Rend. Semin. Mat. Univ. Padova (2014); available online at http://rendiconti.math.unipd.it/forthcoming/downloads/HeLiWanglogo.pdf.
  7. 7.
    K. Doerk and T. O. Hawkes, Finite Soluble Groups, Walter De Gruyter, Berlin; New York (1992).CrossRefzbMATHGoogle Scholar
  8. 8.
    S. Li, “On minimal subgroups of finite groups,” Comm. Algebra, 22, No. 6, 1913–1918 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    A. Ballester-Bolinches and M. C. Pedraza-Aguilera, “On minimal subgroup of finite groups,” Acta Math. Hungar., 73, No. 4, 335–342 (1996).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. J. S. Robinson, A Course in the Theory of Groups, Springer, Berlin–New York (1993).Google Scholar
  11. 11.
    H. Wei and Y. Wang, “On C⇤-normality and its properties,” J. Group Theory, 10, 211–223 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    M. S. Baand and Z. I. Borevich, “On the arrangement of intermediate subgroups,” in: Rings and Linear Groups, Kubanskii University, Krasnodar (1988), pp. 14–41.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • X. He
    • 1
  • S. Li
    • 1
  • Y. Wang
    • 2
  1. 1.Department of MathematicsGuangxi UniversityNanningChina
  2. 2.Lingnan College and Department of MathematicsSun Yat-Sen UniversityGuangzhouChina

Personalised recommendations