Skip to main content
Log in

The Nehari Manifold Approach for a p(x)-Laplacian Problem with Nonlinear Boundary Conditions

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a class of p(x)-Laplacian equations involving nonnegative weight functions with nonlinear boundary conditions. Our technical approach is based on the Nehari manifold, which is similar to the fibering method proposed by Drabek and Pohozaev, together with the recent idea from Brown and Wu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Afrouzi and S. H. Rasouli, “A variational approach to a quasilinear elliptic problem involving the p-Laplacian and nonlinear boundary condition,” Nonlin. Anal., 71, 2447–2455 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  2. K. J. Brown and T. F.Wu, “A semilinear elliptic system involving nonlinear boundary condition and sign changing weight function,” J. Math. Anal. Appl., 337, 1326–1336 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Drabek and S. I. Pohozaev, “Positive solutions for the p(x)-Laplacian: application of the fibering method,” Proc. Roy. Soc. Edinburgh Sec. A, 127, 721–747 (1997).

    Article  MathSciNet  Google Scholar 

  4. Y. Chen, S. Levine, and M. Rao, “Variable exponent, linear growth functionals in image restoration,” SIAM J. Appl. Math., 66, No. 4, 1383–1406 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Dai, “Infinitely many solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian,” Nonlin. Anal., 70, 2297–2305 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Dai, “Infinitely many solutions for a hemivariational inequality involving the p(x)-Laplacian,” Nonlin. Anal., 71, 186–195 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Dai, “Three solutions for a Neumann-type differential inclusion problem involving the p(x)-Laplacian,” Nonlin. Anal., 70, 3755–3760 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Dai, “Infinitely many solutions for a differential inclusion problem in RN involving the p(x)-Laplacian,” Nonlin. Anal., 71, 1116–1123 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  9. X. L. Fan, “On the sub-supersolution methods for p(x)-Laplacian equations,” J. Math. Anal. Appl., 330, 665–682 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  10. X. L. Fan and X. Y. Han, “Existence and multiplicity of solutions for p(x)-Laplacian equations in RN,” Nonlin. Anal., 59, 173–188 (2004).

    MathSciNet  MATH  Google Scholar 

  11. X. L. Fan, J. S. Shen, and D. Zhao, “Sobolev embedding theorems for spaces W k,p(x)(Ω),” J. Math. Anal. Appl., 262, 749–760 (2001).

  12. X. L. Fan and Q. H. Zhang, “Existence of solutions for p(x)-Laplacian Dirichlet problems,” Nonlin. Anal., 52, 1843–1852 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  13. X. L. Fan, Q. H. Zhang, and D. Zhao, “Eigenvalues of p(x)-Laplacian Dirichlet problem,” J. Math. Anal. Appl., 302, 306–317 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  14. X. L. Fan and D. Zhao, “On the spaces L p(x) and W k,p(x),” J. Math. Anal. Appl., 263, 424–446 (2001).

  15. X. L. Fan, Y. Z. Zhao, and Q. H. Zhang, “A strong maximum principle for p(x)-Laplace equations,” Chinese J. Contemp. Math., 24, No. 3, 277–282 (2003).

    MathSciNet  MATH  Google Scholar 

  16. P. Harjulehto and P. Hasto, “An overview of variable exponent Lebesgue and Sobolev spaces,” in: Future Trends in Geometric Function Theory, Ed. D. Herron, RNC Workshop, Jyvaskyla (2003), pp. 85–93.

  17. X. He and W. Zou, “Infinitely many positive solutions for Kirchhoff-type problems,” Nonlin. Anal., 70, 1407–1414 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  18. S. H. Rasouli and G. A. Afrouzi, “The Nehari manifold for a class of concave-convex elliptic systems involving the p-Laplacian and nonlinear boundary condition,” Nonlin. Anal., 73, 3390–3401 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  19. T. F.Wu, “Multiplicity results for a semilinear elliptic equation involving sign-changing weight function,” Rocky Mountain J. Math., 39, No. 3, 995–1011 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  20. T. F. Wu, “A semilinear elliptic problem involving nonlinear boundary condition and sign-changing potential,” Electron. J. Differential Equations, 131, 1–15 (2006).

    MathSciNet  Google Scholar 

  21. T. F. Wu, “On semilinear elliptic equations involving concave-convex nonlinearities and sign-changing weight function,” J. Math. Anal. Appl., 318, 253–270 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  22. X. Zhang and X. Liu, “The local boundedness and Harnack inequality of p(x)-Laplace equation,” J. Math. Anal. Appl., 332, 209–218 (2007).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 1, pp. 92–103, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, S.H., Fallah, K. The Nehari Manifold Approach for a p(x)-Laplacian Problem with Nonlinear Boundary Conditions. Ukr Math J 69, 111–125 (2017). https://doi.org/10.1007/s11253-017-1350-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1350-6

Navigation