Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Darboux Problem for the Generalized Euler–Poisson–Darboux Equation

  • 27 Accesses

The Euler–Poisson–Darboux equation is considered in the characteristic triangle and the Darboux problem is investigated. The solution of the problem is found by the Riemann method. The theorem on existence and uniqueness of the solution is proved.

This is a preview of subscription content, log in to check access.


  1. 1.

    L. Euler, Institutionum Calculi Integralis, Vol. 3 [Russian translation], Fizmatgiz, Moscow (1958).

  2. 2.

    G. Darbux, Lecons sur la Theorie Generale des Surfaces, IV, Gauthier-Villars, Paris (1915).

  3. 3.

    S. D. Poisson, “Memoire sur l’integration des equations lineaires aux derivees partieeles,” J. l’Ecole Roy. Polytechnique, 12, No. 19, 215–248 (1823).

  4. 4.

    B. Riemann, “On the propagation of waves of finite amplitude,” in: Works [Russian translation], Gostekhizdat, Moscow (1948), pp. 376–395.

  5. 5.

    S. Gellerstedt, Sur un Probleme aux Limites Pour une Equation Lineaire aux Derivees Partielles du Second Ordre de Tipe Mixte, Thesis, Uppsala (1935).

  6. 6.

    V. F. Volkodavov and N. Ya. Nikolaev, Boundary-Value Problems for the Euler–Poisson–Darboux Equation [in Russian], Kuibyshevskii Pedagogicheskii Institut, Kuibyshev (1984).

  7. 7.

    R. S. Khairullin, “On the theory of the Euler–Poisson–Darboux equation,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 11(378), 69–76 (1993).

  8. 8.

    M. S. Salakhitdinov and A. K. Urinov, On the Spectral Theory of Equations of Mixed Type [in Russian], Fan, Tashkent (2010).

  9. 9.

    A. M. Nakhushev, Equations of Mathematical Biology [in Russian], Vysshaya Shkola, Moscow (1995).

  10. 10.

    A. K. Urinov and A. I. Ismoilov, “Darboux problem and the principle of absolute extremum for the Euler–Poisson–Darboux equation,” Dokl. Akad. Nauk. Resp. Uzbekistan, No. 5, 20–23 (2011).

  11. 11.

    K. B. Sabitov and G. G. Sharafutdinova, “Cauchy–Goursat problem for the degenerating hyperbolic equation,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat., No. 5, 21–29 (2003).

  12. 12.

    M. B. Kapilevich, “On the singular Cauchy and Tricomi problems,” Dokl. Akad. Nauk SSSR, 177, No. 6, 1265–1268 (1967).

  13. 13.

    M. B. Kapilevich, “One class of Horn hypergeometric functions,” Differents. Uravn., 4, No. 8, 1465–1483 (1968).

  14. 14.

    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York (1953).

  15. 15.

    I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1962).

  16. 16.

    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Elementary Functions [in Russian], Nauka, Moscow (1981).

Download references

Author information

Correspondence to A. I. Ismoilov.

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 69, No. 1, pp. 52–70, January, 2017.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismoilov, A.I., Mamanazarov, A.O. & Urinov, A.K. Darboux Problem for the Generalized Euler–Poisson–Darboux Equation. Ukr Math J 69, 62–84 (2017). https://doi.org/10.1007/s11253-017-1347-1

Download citation