Ukrainian Mathematical Journal

, Volume 68, Issue 12, pp 1986–1991 | Cite as

Some Conditions for Cyclic Chief Factors of Finite Groups

  • J. Tang
  • L. Miao
  • B. Gao
Brief Communications

A subgroup H of a finite group G is called ℳ-supplemented in G if there exists a subgroup B of G such that G = HB and H 1 B is a proper subgroup of G for every maximal subgroup H 1 of H. The main aim of our investigation is to study the influence of ℳ-supplemented subgroups on the cyclic chief factors of finite groups.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Asaad, “Finite groups with certain subgroups of Sylow subgroups complemented,” J. Algebra, 323, 1958–1965 (2010).MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    K. Doerk and T. Hawkes, Finite Soluble Groups, de Gruyter, Berlin–New York (1992).Google Scholar
  3. 3.
    W. Guo, The Theory of Classes of Groups, Science Press–Kluwer Academic Publishers, Beijing, etc. (2000).Google Scholar
  4. 4.
    W. Guo and A. N. Skiba, “On ℱΦ-hypercentral subgroups of finite groups,” J. Algebra, 372, 275–292 (2012).Google Scholar
  5. 5.
    W. Guo and A. N. Skiba, “On some class of finite quasi-ℱ-groups,” J. Group Theory, 12, 407–417 (2009).Google Scholar
  6. 6.
    D. Gorenstein, Finite Groups, Chelsea, New York (1980).MATHGoogle Scholar
  7. 7.
    B. Huppert, Endliche Gruppen I, Springer, Berlin, etc. (1967).CrossRefMATHGoogle Scholar
  8. 8.
    B. Huppert and N. Blackburn, Finite Groups III, Springer, Berlin–New York (1982).CrossRefMATHGoogle Scholar
  9. 9.
    L. Miao and W. Lempken, “On ℳ-supplemented subgroups of finite groups,” J. Group Theory, 12, No. 2, 271–289 (2009).Google Scholar
  10. 10.
    A. N. Skiba, “Cyclicity conditions for G-chief factors of normal subgroups of a group G,” J. Sib. Math., 52, No. 1, 127–130 (2011).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    L. A. Shemetkov, Formations of Finite Groups, Nauka, Moscow (1978).MATHGoogle Scholar
  12. 12.
    L. A. Shemetkov and A. N. Skiba, Formations of Algebraic Systems, Nauka, Moscow (1989).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • J. Tang
    • 1
  • L. Miao
    • 2
  • B. Gao
    • 3
  1. 1.Wuxi Institute of TechnologyWuxiChina
  2. 2.School of Mathematical SciencesYangzhou UniversityYangzhouChina
  3. 3.School of Mathematics and StatisticsYili Normal UniversityYiliChina

Personalised recommendations