Skip to main content
Log in

Application of Faber Polynomials to the Approximate Solution of the Riemann Problem

  • Published:
Ukrainian Mathematical Journal Aims and scope

The Faber polynomials are used to obtain approximate solutions of the Riemann problem on a Lyapunov curve. Moreover, an estimate for the error of the approximated solution is presented and proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Andrievskii, “Approximation of functions by partial sums of series of Faber polynomials on continua with nonzero local geometric characteristic,” Ukr. Math. Zh., 32, No. 1, 3–10; English translation: Ukr. Math. J., 32, No. 1, 1–6 (1980).

  2. A. V. Batyrev, “Approximate solution of the Riemann–Privalov problem,” Uspekhi Mat. Nauk, 11, No. 5, 71–76 (1956).

    MathSciNet  MATH  Google Scholar 

  3. T. A. Chakhmianok and S. V. Rogosin, “On solvability of inhomogeneous nonlinear power-type boundary value problem,” Complex Var. Elliptic Equat., 52, No. 10-11, 933–943 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. J. H. Curtiss, “Solutions of the Dirichlet problem in the plane by approximation with Faber polynomials,” SIAM J. Numer. Anal., 3, No. 2, 204–228 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  5. S. W. Ellacott, “Computation of Faber series with application to numerical polynomial approximation in the complex plane,” Math. Comp., 40, No. 162, 575–587 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Estrada and R. P. Kanwal, Singular Integral Equations, Birkhäuser, Boston (2000).

    Book  MATH  Google Scholar 

  7. F. D. Gakhov, “On the Riemann boundary-value problem,” Mat. Sb., 44, No. 4, 673–683 (1937).

    Google Scholar 

  8. F. D. Gakhov, Boundary Value Problems, Dover Publ., Mineloa (1990).

    MATH  Google Scholar 

  9. S. G. Gal, “Approximation in compact sets by q-Stancu–Faber polynomials, q > 1,” Comput. Math. Appl., 61, No. 10, 3003–3009 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Guven and D. Israfilov, “Polynomial approximation in Smirnov-Orlicz classes,” Comput. Methods Funct. Theory, 2, No. 2, 509–517 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hilbert, Grundz¨uge einer Allgemeinen Theorie der Linearen Integralgleichungen, Berlin, Leipzig, Leipzig B.G. Teubner (1912).

  12. D. M. Israfilov, “Approximation by p-Faber polynomials in the weighted Smirnov class E p(G, ω) and the Bieberbach polynomials,” Constr. Approx., 17, No. 3, 335–351 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  13. B. A. Kats, “The refined metric dimension with applications,” Comput. Methods Funct. Theory, 7, No. 1, 77–89 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  14. B. A. Kats, “The Riemann boundary-value problem on nonrectifiable curves and related questions,” Complex Var. Elliptic Equat., 1053–1069 (2013).

  15. T. Kövari and C. Pommerenke, “On Faber polynomials and Faber expansions,” Math. Z., 99, No. 3, 193–206 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  16. D. Kumar, “Faber polynomial approximation of entire functions of slow growth over Jordan domains,” Ann. Univ. Ferrara Sez. VII Sci. Mat., 1–21 (2013).

  17. E. G. Ladopoulos and G. Tsamasphyros, “Approximations of singular integral equations on Lyapunov contours in Banach spaces,” Comput. Math. Appl., 50, No. 3-4, 567–573 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Lassre and E. Mazzilli, “Bohr’s phenomenon on a regular condenser in the complex plane,” Comput. Methods Funct. Theory, 12, No. 1, 31–43 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  19. F. D. Lesley, V. S. Vinge, and S. E. Warschawski, “Approximation by Faber polynomials for a class of Jordan domains,” Math. Z., 138, No. 3, 225–237 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. K. Lu, Boundary Value Problems for Analytic Functions, World Scientific, Singapore, 16 (1993).

  21. V. V. Mityushev and S. V. Rogosin, Constructive Methods for Linear and Nonlinear Boundary-Value Problems for Analytic Functions: Theory and Applications, CRC Press (2000).

  22. N. I. Muskhelishvili, Singular Integral Equations: Boundary Problems of Function Theory and Their Application to Mathematical Physics, Dover Publ., Mineloa (2008).

    Google Scholar 

  23. N. I. Privalov, “On a boundary-value problem,” Mat. Sb., 41, No. 4, 519–526 (1934).

    MATH  Google Scholar 

  24. M. A. Sheshko, Singular Integral Equations with Cauchy and Hilbert Kernels and Their Approximated Solutions, Catholic University of Lublin, Lublin (2003).

    Google Scholar 

  25. P. K. Suetin, Series of Faber Polynomials, Gordon & Breach Sci. Publ., New York (1998).

    MATH  Google Scholar 

  26. P. Wójcik, M. A. Sheshko, and S. M. Sheshko, “Application of Faber polynomials to the approximate solution of singular integral equation with the Cauchy kernel,” Differ. Equat., 49, No. 2, 198–209 (2013).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 12, pp. 1696–1704, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheshko, M.A., Pylak, D. & Wójcik, P. Application of Faber Polynomials to the Approximate Solution of the Riemann Problem. Ukr Math J 68, 1965–1974 (2017). https://doi.org/10.1007/s11253-017-1341-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1341-7

Navigation