Ukrainian Mathematical Journal

, Volume 68, Issue 12, pp 1949–1964 | Cite as

Perturbation and Error Analyses of the Partitioned LU Factorization for Block Tridiagonal Linear Systems

  • C.-Y. Wu
  • T.-Zh. Huang
Article
  • 24 Downloads

We present the perturbation and backward error analyses of the partitioned LU factorization for block tridiagonal matrices. In addition, we consider the bounds of perturbations for the partitioned LU factorization for block-tridiagonal linear systems. Finally, numerical examples are given to verify the obtained results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Barrland, “Perturbation bounds for the LDL H and the LU factorizations,” BIT, 31, 358–363 (1991).MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. W. Stewart, “Perturbation bounds for the QR factorization of a matrix,” SIAM J. Numer. Anal., 14, 509–518 (1977).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    G. W. Stewart, “On the perturbation of LU, Cholesky, and QR factorizations,” SIAM J. Numer. Anal., 14, 1141–1145 (1993).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    G. W. Stewart, “On the perturbation of LU and Cholesky factors,” SIAM J. Numer. Anal., 17, 1–6 (1997).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    X.-W. Chang and C. C. Paige, “On the sensitivity of the LU factorization,” BIT, 38, 486–501 (1998).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. M. Dopico and J. M. Molera, “Perturbation theory of factorizations of LUF type through series expansions,” SIAM J. Matrix Anal. Appl., 27, 561–581 (2005).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    X.-W. Chang, C. C. Paige, and G. W. Stewart, “Perturbation analyses for the QR factorization,” SIAM J. Matrix Anal. Appl., 18, 775–791 (1997).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    N. J. Higham, Accuracy and Stability of Numerical Algorithm, SIAM, Philadelphia (1996).MATHGoogle Scholar
  9. 9.
    N. J. Higham, “Accuracy and stability of algorithms in numerical linear algebra,” Manchester Center Comput. Math. Numer. Anal. Rept., No. 333 (1998).Google Scholar
  10. 10.
    N. J. Higham, “The accuracy of solutions to triangular systems,” SIAM J. Numer. Anal., 26, 1252–1256 (1989).MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    P. Amodio and F. Mazzia, “A new approach to the backward error analysis in the LU factorization algorithm,” BIT, 39, 385–402 (1999).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    J. W. Demmel, N. J. Higham, and R. S. Shreiber, “Stability of block LU factorization,” Numer. Linear Algebra Appl., 2, 173–190 (1995).MathSciNetCrossRefGoogle Scholar
  13. 13.
    J. Zhao, W. Wang, and W. Ren, “Stability of the matrix factorization for solving block tridiagonal symmetric indefinite linear systems,” BIT Numer. Math., 44, 181–188 (2004).MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    R. M. M. Mattheij, “The stability of LU-decompositions of block tridiagonal matrices,” Bull. Aust. Math. Soc., 29, 177–205 (1984).MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    A. Forsgren, P. E. Gill, and J. R. Shinnerl, “Stability of symmetric ill-conditioned systems arising in interior methods for constrained optimization,” SIAM J. Matrix Anal. Appl., 17, 187–211 (1996).MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. I. Bueno and F. M. Dopico, “Stability and sensitivity of tridiagonal LU factorization without pivoting,” BIT Numer. Math., 44, 651–673 (2004).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    J. W. Demmel and N. J. Higham, “Stability of block algorithms with fast level-3 BLAS,” ACM Trans. Math. Software, 18, 274–291 (1992).CrossRefMATHGoogle Scholar
  18. 18.
    J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd ed, Springer-Verlag, New York (1993).CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • C.-Y. Wu
    • 1
  • T.-Zh. Huang
    • 2
  1. 1.Jinan University and School of Mathematical SciencesUniversity of Electronic Science and TechnologyGuangzhouChina
  2. 2.School of Mathematical SciencesUniversity of Electronic Science and TechnologyChengduChina

Personalised recommendations