Ukrainian Mathematical Journal

, Volume 68, Issue 12, pp 1900–1919 | Cite as

Realization of Exact Three-Point Difference Schemes for Nonlinear Boundary-Value Problems on the Semiaxis

  • M. V. Kutniv
  • M. Król
Article
  • 28 Downloads

New algorithmic realization of exact three-point difference schemes via the three-point difference schemes of high order of accuracy is proposed for the numerical solution of boundary-value problems for systems of nonlinear ordinary differential equations on the semiaxis. We study the existence and uniqueness of the solution of three-point difference schemes and estimate the rate of convergence. The results of numerical experiments are also presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Collatz, The Numerical Treatment of Differential Equations, Springer, Berlin (1960).CrossRefMATHGoogle Scholar
  2. 2.
    R. Fazio, “A novel approach to the numerical solution of boundary-value problems on infinite intervals,” SIAM J. Numer. Anal., 33, No. 4, 1473–1483 (1996).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    F. R. Hoog and R. Weiss, “An approximation theory for boundary-value problems on infinite intervals,” Computing, 24, 227–239 (1980).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Lentini and H. B. Keller, “Boundary-value problems on semi-infinite intervals and their numerical solution,” SIAM J. Numer. Anal., 17, No. 4, 577–604 (1980).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    P. A. Markowich and C. A. Ringhofer, “Collocation methods for boundary-value problems on long intervals,” Math. Comput., 40, No. 174, 123–150 (1983).MathSciNetMATHGoogle Scholar
  6. 6.
    F. R. Hoog and R. Weiss, “The numerical solution of boundary-value problems with an essential singularity,” SIAM J. Numer. Anal., 16, No. 4, 637–669 (1979).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    W. Auzinger, G. Kneisl, O. Koch, and E. Weinmüller, “A collocation code for singular boundary-value problems in ordinary differential equations,” Numer. Algorithms, 33, No. 1, 27–39 (2003).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    I. P. Gavrilyuk, M. Hermann, M. V. Kutniv, and V. L. Makarov, “Difference schemes for nonlinear BVPs on the semiaxis,” Comput. Methods Appl. Math., 7, No. 1, 25–47 (2007).MathSciNetMATHGoogle Scholar
  9. 9.
    I. P. Gavrilyuk, M. Hermann, M. V. Kutniv, and V. L. Makarov, “Adaptive algorithms based on exact difference schemes for nonlinear BVPs on the half axis,” Appl. Numer. Math., 59, 1529–1536 (2009).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    V. L. Makarov and A. A. Samarskii, “Exact three-point difference schemes for nonlinear ordinary differential equations of the second order, and their implementation,” Soviet Math. Dokl., 41, No. 3, 495–500 (1990).MathSciNetGoogle Scholar
  11. 11.
    M. V. Kutniv, V. L. Makarov, and A. A. Samarskii, “Accurate three-point difference schemes for second-order nonlinear ordinary differential equations and their implementation,” Comput. Math. Math. Phys., 39, No. 1, 45–60 (1999).MathSciNetMATHGoogle Scholar
  12. 12.
    I. P. Gavrilyuk, M. Hermann, V. L. Makarov, and M. V. Kutniv, Exact and Truncated Difference Schemes for Boundary-Value ODEs, Springer, Basel (2011).CrossRefMATHGoogle Scholar
  13. 13.
    R. P. Agarwal and D. O’Regan, Infinite Interval Problems for Differential, Difference, and Integral Equations, Kluwer Academic Publishers, Dordrecht (2001).CrossRefMATHGoogle Scholar
  14. 14.
    G. M. Fikhtengol’ts, Foundations of Mathematical Analysis [in Russian], Vol. 1, Nauka, Moscow (1957).MATHGoogle Scholar
  15. 15.
    J. C. Butcher, Numerical Methods for Ordinary Differential Equations, Wiley, Chichester (2003).CrossRefMATHGoogle Scholar
  16. 16.
    E. Hairer, S. P. Norsett, and G. Wanner, Solving Ordinary Differential Equations. I. Nonstiff Problems, Springer, Berlin (1993).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. V. Kutniv
    • 1
    • 2
  • M. Król
    • 2
  1. 1.“Lvivs’ka Politekhnika” National UniversityLvivUkraine
  2. 2.Rzeszów University of TechnologyRzeszówPoland

Personalised recommendations