Ukrainian Mathematical Journal

, Volume 68, Issue 12, pp 1860–1873 | Cite as

Numerical Interpretation of The Gurov–Reshetnyak Inequality on The Real Axis

  • V. D. Didenko
  • A. A. Korenovskii
  • N. J. Tuah
Article
  • 29 Downloads

We find the “norm” of a power function in the Gurov–Reshetnyak class on the real line. Moreover, as a result of numerical experiments, we establish a lower bound for the norm of the operator of even extension of a function from the Gurov–Reshetnyak class from the semiaxis onto the entire real line.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bojarski, “Remarks on stability of the inverse Hölder inequalities and quasiconformal mappings,” Ann. Acad. Sci. Fenn. Math., 10, 291–296 (1985).Google Scholar
  2. 2.
    V. D. Didenko, A. A. Korenovskyi, and N. J. Tuah, “Mean oscillations of the logarithmic function,” Ric. Mat., 62, No. 1, 81–90 (2013).MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    M. Franciosi, “Higher integrability results and Hölder continuity,” J. Math. Anal. Appl., 150, No. 1, 161–165 (1990).MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    M. Franciosi, “The Gurov–Reshetnyak condition and VMO,” J. Math. Anal. Appl., 181, No. 1, 17–21 (1994).MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    M. Franciosi and G. Moscariello, “Higher integrability results,” Manuscripta Math., 52, No. 1, 151–170 (1985).MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    F. W. Gehring, “The L p-integrability of the partial derivatives of a quasiconformal mapping,” Acta Math., 130, 265–273 (1973).MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    L. G. Gurov and Y. G. Reshetnyak, “An analogue of the concept of functions with bounded mean oscillation,” Sib. Math. J., 17, No. 3, 417–422 (1976).MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    T. Iwaniec, “On L-integrability in PDE’s and quasiregular mappings for large exponent,” Ann. Acad. Sci. Fenn. Math., 7, No. 2, 301–322 (1982).MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    I. Klemes, “A mean oscillation inequality,” Proc. Amer. Math. Soc., 93, No. 3, 497–500 (1985).MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    A. A. Korenovskii, Mean Oscillations and Equimeasurable Rearrangements of Functions,, Lecture Notes Unione Mat. Ital., 4, Springer, Berlin (2007).Google Scholar
  11. 11.
    A. Korenovskyi, “The Gurov–Reshetnyak inequality on semiaxes,” Ann. Mat. Pura Appl., 195, No. 2, 659–680 (2016).MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    A. A. Korenovskii, “On the connection between mean oscillation and exact integrability classes of functions,” Mat. Sb., 181, No. 12, 1721–1727 (1990).Google Scholar
  13. 13.
    A. A. Korenovskii, “On the embedding of the Gehring class into the Gurov–Reshetnyak class,” Visn. Odes. Nats. Univ. Mat. Mekh., 8, No. 2, 15–21 (2003).MATHGoogle Scholar
  14. 14.
    A. A. Korenovskii, “Relation between the Gurov–Reshetnyak and Muckenhoupt function classes,” Mat. Sb., 194, No. 6, 127–134 (2003).MathSciNetCrossRefGoogle Scholar
  15. 15.
    A. A. Korenovskii, “About the Gurov–Reshetnyak class of functions,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 1, No. 1 (2004), pp. 189–206.Google Scholar
  16. 16.
    A. A. Korenovskii, A. K. Lerner, and A. M. Stokolos, “A note on the Gurov–Reshetnyak condition,” Math. Res. Lett., 9, No. 5-6, 579–583 (2002).MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    R. V. Shanin, “Extension of functions with bounded mean oscillation,” J. Math. Sci. (N. Y.), 196, No. 5, 693–704 (2014).MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    I. Wik, “Note on a theorem by Reshetnyak–Gurov,” Dep. Math. Univ. Umea (Publ.), 6, 1–7 (1985).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • V. D. Didenko
    • 1
  • A. A. Korenovskii
    • 2
  • N. J. Tuah
    • 3
  1. 1.Odessa State Academy of Technical Regulation and QualityOdessaUkraine
  2. 2.Mechnikov Odessa National UniversityOdessaUkraine
  3. 3.Universiti Brunei DarussalamBegawanBrunei

Personalised recommendations