Skip to main content
Log in

Exponentially Convergent Method For An Abstract Nonlocal Problem With Integral Nonlinearity

  • Published:
Ukrainian Mathematical Journal Aims and scope

We consider a nonlocal problem for the first-order differential equation with unbounded operator coefficient in a Banach space and a nonlinear integral nonlocal condition. We propose an exponentially convergent method for the numerical solution of this problem and justified this method under the assumptions that the indicated operator coefficient A is sectorial and that certain conditions for the existence and uniqueness of the solution are satisfied. This method is based on the reduction of the posed problem to an abstract Hammerstein-type equation, discretization of this equation by the method of collocation, and its subsequent solution by the method of simple iterations. Each iteration of the method is based on the Sinc-quadrature approximation of the exponential operator function represented by the Dunford–Cauchy integral over the hyperbola enveloping the spectrum of A. The integral part of the nonlocal condition is approximated by using the Clenshaw–Curtis quadrature formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. B. Vasylyk and V. L. Makarov, “Exponentially convergent method for the first-order differential equation in a Banach space with integral nonlocal condition,” Ukr. Mat. Zh., 66, No. 8, 1029–1040 (2014); English translation : Ukr. Math. J., 66, No. 8, 1152–1164 (2014).

  2. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

    Google Scholar 

  3. A. Bica, M. Curila, and S. Curila, “About a numerical method of successive interpolations for functional Hammerstein integral equations,” J. Comput. Appl. Math., 236, No. 7, 2005–2024 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  4. I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, “Data-sparse approximation to the operator-valued functions of elliptic operator,” Math. Comput., 73, 1297–1324 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. I. P. Gavrilyuk, W. Hackbusch, and B. N. Khoromskij, “Data-sparse approximation of a class of operator-valued functions,” Math. Comput., 74, 681–708 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  6. I. P. Gavrilyuk, V. L. Makarov, D. O. Sytnyk, and V. B. Vasylyk, “Exponentially convergent method for them-point nonlocal problem for a first order differential equation in Banach space,” Numer. Funct. Anal. Optim., 31, No. 1-3, 1–21 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  7. I. P. Gavrilyuk and V. L. Makarov, “Exponentially convergent algorithms for the operator exponential with applications to inhomogeneous problems in Banach spaces,” SIAM J. Numer. Anal., 43, No. 5, 2144–2171 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  8. I. P. Gavrilyuk and V. L. Makarov, “An exponential convergent algorithm for nonlinear differential equations in Banach spaces,” Math. Comput., 76, 1895–1923 (2007).

    Article  MATH  Google Scholar 

  9. I. P. Gavrilyuk, V. L. Makarov, and V. B. Vasylyk, “Exponentially convergent approximation to the elliptic solution operator,” Comput. Meth. Appl. Math., 6, No. 4, 386–404 (2006).

    MathSciNet  MATH  Google Scholar 

  10. T. Ju. Bohonova, I. P. Gavrilyuk, V. L. Makarov, and V. B. Vasylyk, “Exponentially convergent Duhamel-like algorithms for differential equations with an operator coefficient possessing a variable domain in a Banach space,” SIAM J. Numer. Anal., 46, No. 1, 365–396 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  11. I. Gavrilyuk, V. Makarov, and V. Vasylyk, Exponentially Convergent Algorithms for Abstract Differential Equations, Springer, Basel (2011).

    Book  MATH  Google Scholar 

  12. C. P. Gupta, “Functional analysis and applications,” in: L. Nachbin (editor), Proceedings of the Symposium of Analysis, Universidade Federal de Pernambuco Recife (Pernambuco, Brasil, July 9–29, 1972), Springer, Berlin (1974), pp. 184–238.

    Google Scholar 

  13. D. Henry, Geometrical Theory of Semilinear Parabolic Equations, Springer, Berlin (1981).

    Book  MATH  Google Scholar 

  14. P. Hess, “On nonlinear equations of Hammerstein type in Banach spaces,” Proc. Amer. Math. Soc., 30, No. 2, 308–312 (1971).

    Article  MathSciNet  MATH  Google Scholar 

  15. T. Kato, “On linear differential equations in Banach spaces,” Comm. Pure Appl. Math., 9, 479–486 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  16. M. López-Fernández, C. Palencia, and A. Schädle, “A spectral order method for inverting sectorial Laplace transforms,” SIAM J. Numer. Anal., 44, 1332–1350 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  17. W. McLean and V. Thomee, “Time discretization of an evolution equation via Laplace transforms,” IMA J. Numer. Anal., 24, 439–463 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  18. Ph. Clément, H. J. A. M. Heijmans, S. Angenent, et al., One-Parameter Semigroups, North-Holland Publ. Comp., Amsterdam (1987).

    MATH  Google Scholar 

  19. P. M. Fitzpatrick and W. V. Petryshyn, “Galerkin methods in the constructive solvability of nonlinear Hammerstein equations with applications to differential equations,” Trans. Amer. Math. Soc., 238, 321–340 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Some, “Some recent numerical methods for solving nonlinear Hammerstein integral equations,” Math. Comput. Modelling, 18, No. 9, 55–62 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  21. S. Kumar and I. H. Sloan, “A new collocation-type method for Hammerstein integral equations,” Math. Comput., 48, No. 178, 585–593 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. L. N. Trefethen, Approximation Theory and Approximation Practice, Society for Industrial and Applied Mathematics, Philadelphia (2013).

    MATH  Google Scholar 

  23. V. Vasylyk, “Exponentially convergent method for the m-point nonlocal problem for an elliptic differential equation in Banach space,” J. Numer. Appl. Math., 105, No. 2, 124–135 (2011).

    Google Scholar 

  24. V. Vasylyk, “Nonlocal problem for an evolution first-order equation in Banach space,” J. Numer. Appl. Math., 109, No. 3, 139–149 (2012).

    Google Scholar 

  25. V. Vasylyk, “Exponentially convergent method for integral nonlocal problem for the elliptic equation in Banach space,” J. Numer. Appl. Math., 110, No. 3, 119–130 (2013).

    Google Scholar 

  26. J. A. C. Weideman, “Improved contour integral methods for parabolic PDEs,” IMA J. Numer. Anal., 30, No. 1, 334–350 (2010).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 12, pp. 1587–1597, December, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasylyk, V.B., Makarov, V.L. Exponentially Convergent Method For An Abstract Nonlocal Problem With Integral Nonlinearity. Ukr Math J 68, 1837–1848 (2017). https://doi.org/10.1007/s11253-017-1332-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1332-8

Navigation