Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Construction of Regular Semigroups with Quasiideal Regular ∗-Transversals

  • 22 Accesses

Let S be a semigroup and let “∗” be a unary operation on S satisfying the following identities:

$$ x{x}^{\ast }x=x,\kern1em {x}^{\ast }x{x}^{\ast }={x}^{\ast },\kern1em {x}^{\ast \ast \ast }={x}^{\ast },\kern1em {\left(x{y}^{\ast}\right)}^{\ast }={y}^{\ast \ast }{x}^{\ast },\kern1em {\left({x}^{\ast }y\right)}^{\ast }={y}^{\ast }{x}^{\ast \ast }. $$

Then S  = {x |x ∈ S} is called a regular ∗-transversal of S in the literature. We propose a method for the construction of regular semigroups with quasiideal regular ∗-transversals based on the use of fundamental regular semigroups and regular ∗-semigroups.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T. S. Blyth and R. B. McFadden, “Regular semigroups with a multiplicative inverse transversal,” Proc. Roy. Soc. Edinburgh Sect. A, 92, 253–270 (1982).

  2. 2.

    T. S. Blyth and M. H. Almeida Santos, “On amenable orders and inverse transversals,” Comm. Algebra, 39, No. 6, 2189–2209 (2011).

  3. 3.

    T. S. Blyth and M. H. Almeida Santos, “H-cohesive orders associated with inverse transversals,” Comm. Algebra, 40, No. 8, 2771–2785 (2012).

  4. 4.

    J. M. Howie, An Introduction to Semigroup Theory, Academic Press, London (1976).

  5. 5.

    T. Imaoka, “On fundamental regular ∗-semigroups,” Mem. Fac. Sci. Shimane Univ., 14, 19–23 (1980).

  6. 6.

    P. R. Jones, “A common framework for restriction semigroups and regular ∗-semigroups,” J. Pure Appl. Algebra, 216, 618–632 (2012).

  7. 7.

    Y. H. Li, “A class of semigroups with regular ∗-transversals,” Semigroup Forum, 65, 43–57 (2002).

  8. 8.

    Y. H. Li, “On regular semigroups with a quasiideal regular ∗-transversal,” Adv. Math. (China), 32, No. 6, 727–738 (2003).

  9. 9.

    Y. H. Li, S. F. Wang, and R. H. Zhang, “Regular semigroups with regular ∗-transversals,” J. Southwest China Normal Univ. (Nat. Sci.), 31, No. 5, 52–56 (2006).

  10. 10.

    T. E. Nordahl and H. E. Scheiblich, “Regular ∗-semigroups,” Semigroup Forum, 16, 369–377 (1978).

  11. 11.

    M. Petrich and N. R. Reilly, Completely Regular Semigroups, Wiley-Interscience Publication (1999).

  12. 12.

    X. L. Tang, “Regular semigroups with inverse transversals,” Semigroup Forum, 55, No. 1, 24–32 (1997).

  13. 13.

    X. L. Tang, “Identities for a class of regular unary semigroups,” Comm. Algebra, 36, 2487–2502 (2008).

  14. 14.

    S. F. Wang and Y. Liu, “On P-regular semigroups having regular ∗-transversals,” Semigroup Forum, 76, No. 3, 561–575 (2008).

  15. 15.

    S. F. Wang and D. Zhang, “Regular semigroups with regular ∗-transversals,” Acta Math. Sinica (Chin. Ser.), 54, No. 4, 591–600 (2011).

  16. 16.

    S. F. Wang, “A classification of regular ∗-transversals,” Adv. Math. (China), 41, No. 5, 574–582 (2012).

  17. 17.

    S. F. Wang, “Fundamental regular semigroups with quasiideal regular ∗-transversals,” Bull. Malays. Math. Sci. Soc., 38, No. 3, 1067–1083 (2015).

  18. 18.

    M. Yamada, “P-systems in regular semigroups,” Semigroup Forum, 24, 173–178 (1982).

  19. 19.

    M. Yamada, “On the structure of fundamental regular ∗-semigroups,” Studia Sci. Math. Hungar., 16, No. 3-4, 281–288 (1981).

Download references

Author information

Correspondence to Sh.-F. Wang.

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 11, pp. 1552–1560, November, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S. A Construction of Regular Semigroups with Quasiideal Regular ∗-Transversals. Ukr Math J 68, 1798–1807 (2017). https://doi.org/10.1007/s11253-017-1328-4

Download citation