Skip to main content

Advertisement

Log in

Boundary-Value Problems for Nonlinear Parabolic Equations with Delay and Degeneration at the Initial Time

  • Published:
Ukrainian Mathematical Journal Aims and scope

We study boundary-value problems with Dirichlet conditions for nonlinear parabolic equations with variable delay (i.e., delay is a function of time) and degeneration at the initial time. The existence and uniqueness of the classical solution of this problem are proved. The a priori estimates of this solution are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. N. Agaev, “On the first boundary-value problem for linear degenerate parabolic equations,” Izv. Akad. Nauk Azer. SSR, Ser. Fiz.-Tekh. Mat. Nauk, 2, 10–16 (1976).

    MathSciNet  MATH  Google Scholar 

  2. M. Bokalo and V. Dmytriv, “Fourier problem for a different-component evolutionary system of equations with integral delay,” Visn. Lviv. Univ., Ser. Mekh.-Mat., 60, 32–49 (2002).

    MATH  Google Scholar 

  3. M. Bokalo and O. Il’nyts’ka, “Mixed problems for parabolic equations with variable delay,” Bukov. Mat. Zh., 3, 16–24 (2015).

    MATH  Google Scholar 

  4. O. M. Buhrii, “Problems with homogeneous boundary conditions for nonlinear equations with degeneration,” Ukr. Mat. Visn., 5, 435–469 (2008).

    Google Scholar 

  5. L. É. Él’sgol’ts and S. B. Norkin, Introduction to the Theory of Differential Equations with Deviating Argument [in Russian], Nauka, Moscow (1971).

    MATH  Google Scholar 

  6. O. A. Ladyzhenskaya, N. N. Ural’tseva, and V. A. Solonnikov, Linear and Quasilinear Equations of the Parabolic Type [in Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  7. A. D. Myshkis, Linear Differential Equations with Delayed Argument [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  8. I. D. Pukal’skyi, “Nonlocal Neumann problem for a degenerate parabolic equation,” Ukr. Mat. Zh., 51, No. 9, 1232–1243 (1999); English translation: Ukr. Math. J., 51, No. 9, 1386–1398 (1999).

  9. V. Yu. Slyusarchuk, Absolute Stability of Dynamical Systems with Aftereffect [in Ukrainian], Rivne State University of Water Management and Utilization of Natural Resources, Rivne (2003).

    Google Scholar 

  10. D. Bainov and V. Petrov, “Asymptotic properties of the nonoscillatory solutions of second-order neutral equations with a deviating argument,” J. Math. Anal. Appl., 190, 645–653 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Burger, S. Evje, and K. H. Karlsenc, “On strongly degenerate convections diffusion problems modelling sedimentations consolidation processes,” J. Math. Anal. Appl., 247, 517–556 (2000).

    Article  MathSciNet  Google Scholar 

  12. T. A. Burton and J. R. Haddrock, “On the delay-differential equations x′(t) + a(t)f(x(t − r(t))) = 0 and x″(t) + a(t)f(x(t − r(t))) = 0,J. Math. Anal. Appl., 54, 37–48 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  13. G.-Q. G. Chen, On Degenerate Partial Differential Equations, Oxford Centre for Nonlinear PDE, Mathematical Institute, University of Oxford, 16 (2010).

  14. R. V. Culshaw and R. Shigui, “A delay-differential equation model of HIV infection of CD4+ T-cells,” Math. Biosci., 165, 27–39 (2000).

    Article  MATH  Google Scholar 

  15. V. M. Dmytriv, “On a Fourier problem for coupled evolution system of equations with time delays,” Mat. Stud., 16, 141–156 (2001).

    MathSciNet  MATH  Google Scholar 

  16. T. Dumrongpokaphan, Y. Lenbury, R. Ouncharoen, and Y. Xu, “An intracellular delay-differential equation model of the HIV infection and immune control,” Math. Modelling Natur. Phenomena, 2, 75–99 (2007).

    MathSciNet  MATH  Google Scholar 

  17. W. Feng, C. V. Pao, and X. Lu, “Global attractors of reaction-diffusion systems modelling food chain populations with delays,” Comm. Pure Appl. Anal., 10, 1463–1478 (2011).

    Article  MATH  Google Scholar 

  18. K. H. Karlsen and M. Ohlbergerb, “A note on the uniqueness of entropy solutions of nonlinear degenerate parabolic equations,” J. Math. Anal. Appl., 275, 439–458 (2002).

    Article  MathSciNet  Google Scholar 

  19. Y. Kuang, B. Zhang, and T. Zhao, “Qualitative analysis of a nonautonomous nonlinear delay differential equation,” Tohoku Math. J., 43, 509–528 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  20. C. Mascia, A. Porretta, and A. Terracina, “Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations,” Arch. Ration. Mech. Anal., 163, 87–124 (2002).

    Article  MathSciNet  MATH  Google Scholar 

  21. C. V. Pao, “Coupled nonlinear parabolic systems with time delays,” J. Math. Anal. Appl., 196, 237–265 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  22. C. V. Pao, “Dynamics of nonlinear parabolic systems with time delays,” J. Math. Anal. Appl., 198, 751–779 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  23. C. V. Pao, “Systems of parabolic equations with continuous and discrete delays,” J. Math. Anal. Appl., 205, 157–185 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. C. V. Pao, “Time delays parabolic systems with coupled nonlinear boundary conditions,” Proc. Amer. Math. Soc., 130, 1079–1086 (2001).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 9, pp. 1155–1168, September, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokalo, M.M., Il’nyts’ka, O.V. Boundary-Value Problems for Nonlinear Parabolic Equations with Delay and Degeneration at the Initial Time. Ukr Math J 68, 1323–1339 (2017). https://doi.org/10.1007/s11253-017-1298-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-017-1298-6

Navigation