Advertisement

Ukrainian Mathematical Journal

, Volume 68, Issue 7, pp 1062–1076 | Cite as

Automorphisms and Derivations of Leibniz Algebras

  • M. Ladra
  • I. M. Rikhsiboev
  • R. M. Turdibaev
Article
  • 44 Downloads

We extend some general properties of automorphisms and derivations known for the Lie algebras to finite-dimensional complex Leibniz algebras. The analogs of the Jordan–Chevalley decomposition for derivations and the multiplicative decomposition for automorphisms of finite-dimensional complex Leibniz algebras are obtained.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sh. A. Ayupov and B. A. Omirov, “On Leibniz algebras. Algebra and operator theory,” in: Proc. Colloq. Tashkent, 1997, Kluwer AP (1998), pp. 1–12.Google Scholar
  2. 2.
    A. Blokh, “On a generalization of the concept of Lie algebra,” Dokl. Akad. Nauk SSSR, 165, 471–473 (1965).MathSciNetzbMATHGoogle Scholar
  3. 3.
    L. Bosko, A. Hedges, J. T. Hird, N. Schwartz, and K. Stagg, “Jacobson’s refinement of Engel’s theorem for Leibniz algebras,” Involve, 4, No. 3, 293–296 (2011).Google Scholar
  4. 4.
    J. Dixmier and W. G. Lister, “Derivations of nilpotent Lie algebras,” Proc. Amer. Math. Soc., 8, 155–158 (1957).MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    F. Gantmacher, “Canonical representation of automorphisms of a complex semisimple Lie group,” Rec. Math. Moscou, 5(47), 101–146 (1939).MathSciNetzbMATHGoogle Scholar
  6. 6.
    M. Goze and Yu. B. Khakimdjanov, “Nilpotent Lie algebras,” Math. Appl., 361 (1996).Google Scholar
  7. 7.
    J. E. Humphreys, “Introduction to Lie algebras and representation theory,” GTM, 9 (1972).Google Scholar
  8. 8.
    N. Jacobson, “A note on automorphisms and derivations of Lie algebras,” Proc. Amer. Math. Soc., 6, 281–283 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    N. Jacobson, Lie algebras, Wiley & Sons, New York, London (1962).Google Scholar
  10. 10.
    Yu. B. Khakimdjanov, “Characteristically nilpotent Lie algebras,” Math. USSR Sb., 70, No. 1, 65–78 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J.-L. Loday, “Cyclic homology,” Grundlehren Math. Wiss., 301 (1992).Google Scholar
  12. 12.
    J.-L. Loday, “Une version non commutative des alg`ebres de Lie: les alg`ebres de Leibniz,” Enseign. Math., 39, No. 2, 269–293 (1993).MathSciNetGoogle Scholar
  13. 13.
    A. I. Mal’cev, Foundations of Linear Algebra, Freeman & Co., San Francisco, London (1963).Google Scholar
  14. 14.
    B. A. Omirov, “On derivations of filiform Leibniz algebras,” Math. Notes, 77, No. 5-6, 677–685 (2005).Google Scholar
  15. 15.
    I. M. Rikhsiboev, “On the nilpotence of complex Leibniz algebras,” Uzbek. Mat. Zh., 2, 58–62 (2005).MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. Ladra
    • 1
  • I. M. Rikhsiboev
    • 2
  • R. M. Turdibaev
    • 1
  1. 1.University of Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Malaysian Institute of Industrial Technology, University of Kuala LumpurKuala LumpurMalaysia

Personalised recommendations