Skip to main content
Log in

Normality of the Orlicz–Sobolev Classes

  • Published:
Ukrainian Mathematical Journal Aims and scope

We establish a series of new criteria of equicontinuity and, hence, normality of the mappings of Orlicz–Sobolev classes in terms of inner dilatations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. G. Reshetnyak, Space Mappings with Bounded Distortion [in Russian], Nauka, Novosibirsk (1982).

  2. T. Iwaniec and V. Sver´ak, “On mappings with integrable dilatation,” Proc. Amer. Math. Soc., 118, 181–188 (1993).

  3. T. Iwaniec and G. Martin, Geometric Function Theory and Nonlinear Analysis, Clarendon Press, Oxford (2001).

    MATH  Google Scholar 

  4. V. Ya. Gutlyanskii, V. I. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: a Geometric Approach, Springer, New York (2012).

  5. O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory, Springer, New York (2009).

    MATH  Google Scholar 

  6. D. A. Kovtonyuk, V. I. Ryazanov, R. R. Salimov, and E. A. Sevost’yanov, “On the theory of Orlicz–Sobolev classes,” Algebr. Anal., 25, No. 6, 49–101 (2013).

    MathSciNet  MATH  Google Scholar 

  7. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuous classes of ring Q-homeomorphisms,” Sib. Mat. Zh., 48, No. 6, 1361–1376 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  8. V. I. Ryazanov and E. A. Sevost’yanov, “Equicontinuity of mappings quasiconformal in the mean,” Sib. Mat. Zh., 52, No. 3, 665–679 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Golberg, R. Salimov, and E. Sevost’yanov, “Distortion estimates under mappings with controlled p-module,” Ann. Univ. Bucharest. Math. Ser., 63, No. 5, 95–114 (2014).

    MathSciNet  MATH  Google Scholar 

  10. Z. Birnbaum and W. Orlicz, “U¨ ber die Verallgemeinerungen des Begriffes der zueinander konjugierten Potenzen,” Stud. Math., 3, 1–67 (1931).

    MATH  Google Scholar 

  11. F. W. Gehring, “Rings and quasiconformal mappings in space,” Trans. Amer. Math. Soc., 103, 353–393 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Ryazanov, U. Srebro, and E. Yakubov, “On ring solutions of Beltrami equation,” J. Anal. Math., 96, 117–150 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Lomako, R. Salimov, and E. Sevost’yanov, “On equicontinuity of solutions to the Beltrami equations,” Ann. Univ. Bucharest. Math. Ser., 69, No. 2, 263–274 (2010).

    MathSciNet  MATH  Google Scholar 

  14. A. P. Calderon, “On the differentiability of absolutely continuous functions,” Riv. Mat. Univ. Parma, 2, 203–213 (1951).

    MathSciNet  MATH  Google Scholar 

  15. H. Federer, Geometric Measure Theory, Springer, New York (1969).

    MATH  Google Scholar 

  16. F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Heinonen, T. Kilpelainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Clarendon Press, Oxford (1993).

    MATH  Google Scholar 

  18. H. M. Reimann and T. Rychener, Funktionen Beschr¨ankter Mittlerer Oscillation, Springer, Berlin (1975).

    Book  MATH  Google Scholar 

  19. D. Sarason, “Functions of vanishing mean oscillation,” Trans. Amer. Math. Soc., 207, 391–405 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Chiarenza, M. Frasca, and P. Longo, “W 2,p-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 336, No. 2, 841–853 (1993).

  21. T. Iwaniec and C. Sbordone, “Riecz transforms and elliptic PDEs with VMO coefficients,” J. Anal. Math., 74, 183–212 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  22. O. Martio, V. Ryazanov, and M. Vuorinen, “BMO and injectivity of space quasiregular mappings,” Math. Nachr., 205, 149–161 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  23. D. K. Palagachev, “Quasilinear elliptic equations with VMO coefficients,” Trans. Amer. Math. Soc., 347, No. 7, 2481–2493 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. A. Ragusa, “Elliptic boundary-value problem in vanishing mean oscillation hypothesis,” Comment. Math. Univ. Carol., 40, No. 4, 651–663 (1999).

    MathSciNet  MATH  Google Scholar 

  25. A. Ignat’ev and V. Ryazanov, “Finite mean oscillation in the mapping theory,” Ukr. Mat. Vestn., 2, No. 3, 395–417 (2005).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 1, pp. 106–116, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryazanov, V.I., Salimov, R.R. & Sevost’yanov, E.A. Normality of the Orlicz–Sobolev Classes. Ukr Math J 68, 115–126 (2016). https://doi.org/10.1007/s11253-016-1212-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1212-7

Navigation