Skip to main content
Log in

Rings Whose Nonsingular Modules Have Projective Covers

  • Published:
Ukrainian Mathematical Journal Aims and scope

We determine rings R with the property that all (finitely generated) nonsingular right R-modules have projective covers. These are just the rings with t-supplemented (finitely generated) free right modules. Hence, they are called right (finitely) Σ-t-supplemented. It is also shown that a ring R for which every cyclic nonsingular right R-module has a projective cover is exactly a right t-supplemented ring. It is proved that, for a continuous ring R, the property of right Σ- t-supplementedness is equivalent to the semisimplicity of R/Z 2(R R ), while the property of being right finitely Σ- t-supplemented is equivalent to the right self-injectivity of R/Z 2(R R ). Moreover, for a von Neumann regular ring R, the properties of being right Σ- t -supplemented, right finitely Σ- t -supplemented, and right t-supplemented are equivalent to the semisimplicity, right self-injectivity, and right continuity of R, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ara and J. K. Park, “On continuous semiprimary rings,” Comm. Algebra, 19, 1945–1957 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  2. Sh. Asgari and A. Haghany, “t-Extending modules and t-Baer modules,” Comm. Algebra, 39, 1605–1623 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  3. Sh. Asgari, A. Haghany, and Y. Tolooei, “T-semisimple modules and t-semisimple rings,” Comm. Algebra, 41, 1882–1902 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Azumaya, “F-semiperfect modules,” J. Algebra, 136, 73–85 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  5. H. Bass, “Finitistic dimension and homological generalization of semiprimary rings,” Trans. Amer. Math. Soc., 95, 466–488 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  6. G. F. Birkenmeier, “Quasi-projective modules and the finite exchange property,” Int. J. Math. Math. Sci., 12, 821–822 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  7. Ch. Chang, “X-lifting modules over right perfect rings,” Bull. Korean Math. Soc., 45, 59–66 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  8. A.W. Chatters and S. M. Khuri, “Endomorphism rings of modules over nonsingular CS rings,” J. London Math. Soc., 21, 434–444 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, “Lifting modules,” Front. Math., Birkhäuser-Verlag, Basel (2006).

  10. N. V. Dung, D. V. Huynh, P. F. Smith, and R. Wisbauer, “Extending modules,” Pitman Res. Notes Math., 313 (1994).

  11. T. G. Faticoni, “On quasi-projective covers,” Trans. Amer. Math. Soc., 278, 101–113 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  12. Y. Guo, “The class of modules with projective cover,” J. Korean Math. Soc., 46, 51–58 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Harmanci, D. Keskin, and P. F. Smith, “On ⊕-supplemented modules,” Acta Math. Hung., 83, 161–169 (1999).

  14. M. Hazewinkel, N. Gubareni, and V. V. Kirichenko, Algebra, Rings, and Modules, Vol. 1,” Math. Its Appl., 575, Springer, Dordrecht (2004).

  15. T. Y. Lam, “Lectures on modules and rings,” Grad. Texts Math., 189 (1998).

  16. T. Y. Lam, “A first course in noncommutative rings,” Grad. Texts Math., 131 (1991).

  17. W. K. Nicholson and M. F. Yousif, “Quasi-Frobenius rings,” Cambridge Tracts Math., 158 (2003).

  18. W. K. Nicholson and M. F. Yousif, “Continuous rings with chain conditions,” J. Pure Appl. Algebra, 97, 325–332 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  19. W. K. Nicholson and Y. Zhou, “Strong lifting,” J. Algebra, 285, 795–818 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  20. A. C. Özcan and P. Aydoğdu, “A generalization of semiregular and semiperfect modules,” Algebra Colloq., 15, 667–680 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  21. R. Wisbauer, Foundations of Module and Ring Theory, Gordon & Breach, Philadelphia (1991).

  22. W. Xue, “Characterizations of semiperfect and perfect rings,” Publ. Mat., 40, 115–125 (1996).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Published in Ukrains’kyi Matematychnyi Zhurnal, Vol. 68, No. 1, pp. 3–13, January, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgari, S., Haghany, A. Rings Whose Nonsingular Modules Have Projective Covers. Ukr Math J 68, 1–13 (2016). https://doi.org/10.1007/s11253-016-1204-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-016-1204-7

Navigation