Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 10, pp 1552–1571 | Cite as

On Some New Inequalities of Hermite–Hadamard Type for Functions Whose Derivatives are s-Convex in the Second Sense in the Absolute Value

  • M. A. Latif
Article

Several new inequalities of the Hermite–Hadamard type are established for functions whose derivatives are s-convex in the second sense in the absolute value. Some applications to special means of positive real numbers are also presented.

Keywords

Convex Function Differentiable Function Positive Real Number Quadrature Rule Special Means 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Alomari, M. Darus, and S. S. Dragomir, “Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are quasiconvex,” RGMIA Res. Rept Collect., 12 (Suppl. 14) (2009).Google Scholar
  2. 2.
    M. Alomari, M. Darus, and S. S. Dragomir, “New inequalities of Simpson’s type for s-convex functions with applications,” RGMIA Res. Rept Collect., 12, No. 4, Article 9 (2009).Google Scholar
  3. 3.
    M. Avci, H. Kavurmaci, and M. E. Ö zdemir, “New inequalities of Hermite–Hadamard type via s-convex functions in the second sense with applications,” Appl. Math. and Comput., 217, 5171–5176 (2011).Google Scholar
  4. 4.
    W. W. Breckner, “Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Raumen,” Pupl. Inst. Math., 23, 13–20 (1978).MathSciNetzbMATHGoogle Scholar
  5. 5.
    S. S. Dragomir and R. P. Agarwal, “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” Appl. Math. Lett., 11, No. 5, 91–95 (1998).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    S. S. Dragomir and C. E. M. Pearce, “Selected topics on Hermite–Hadamard inequalities and applications,” RGMIA Monographs, Victoria Univ., 2000, http://www.staff.vu.edu.au/RGMIA/monographs/hermite hadamard.html.
  7. 7.
    S. S. Dragomir and S. Fitzpatrick, “The Hadamard’s inequality for s-convex functions in the second sense,” Demonstr. Math., 32, No. 4, 687–696 (1999).MathSciNetzbMATHGoogle Scholar
  8. 8.
    H. Hudzik and L. Maligranda, “Some remarks on s-convex functions,” Aequat. Math., 48, 100–111 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    D. Y. Hwang, “Some inequalities for differentiable convex mapping with application to weighted trapezoidal formula and higher moments of random variables,” Appl. Math. and Comput., 217, Issue 23, 9598–9605 (2011).MathSciNetzbMATHGoogle Scholar
  10. 10.
    S. Hussain, M. I. Bhatti, and M. Iqbal, “Hadamard-type inequalities for s-convex functions I,” Punjab Univ. J. Math., 41, 51–60 (2009).MathSciNetzbMATHGoogle Scholar
  11. 11.
    U. S. Kirmaci, “Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula,” Appl. Math. Comput., 147, 137–146 (2004).MathSciNetzbMATHGoogle Scholar
  12. 12.
    U. S. Kirmaci, M. Klaričić Bakula, M. E. Ö zdemir, and J. Pečarić, “Hadamard-type inequalities for s-convex functions,” Appl. Math. Comput., 193, No. 1, 26–35 (2007).Google Scholar
  13. 13.
    H. Kavurmaci, M. Avci, and M. E. Ö zdemir, “New inequalities of Hermite–Hadamard type for convex functions with applications,” arXiv:1006.1593vl[math.CA].Google Scholar
  14. 14.
    M. A. Latif, “New inequalities of Hermite–Hadamard type for functions whose derivatives in absolute value are convex with applications,” Arab J. Math. Sci., 21, No. 1, 84–97 (2015).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    M. Muddassar, M. I. Bhatti, and W. Irshad, “Generalizations of integral inequalities of Hermite–Hadamard type through convexity,” Bull. Austral. Math. Soc., 88, No. 2, 320–330 (2013).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    M. E. Ö zdemir, “A theorem on mappings with bounded derivatives with applications to quadrature rules and means,” Appl. Math. Comput., 138, 425–434 (2003).Google Scholar
  17. 17.
    M. E. Ö zdemir and U. S. Kırmaci, “Two new theorems onmappings uniformly continuous and convex with applications to quadrature rules and means,” Appl. Math. Comput., 143, 269–274 (2003).Google Scholar
  18. 18.
    C. M. E. Pearce and J. E. Pečarić, “Inequalities for differentiable mappings with applications to special means and quadrature formula,” Appl. Math. Lett., 13, 51–55 (2000).MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Ordering, and Statistical Applications, Academic Press, New York (1991).zbMATHGoogle Scholar
  20. 20.
    M. Z. Sarikaya, E. Set, and M. E. Ö zdemir, “On new inequalities of Simpson’s type for s-convex functions,” Comput. Math. Appl., 60, 2191–2199 (2010).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. A. Latif
    • 1
  1. 1.School of Computational and Applied MathematicsUniversity of WitwatersrandJohannesburgSouth Africa

Personalised recommendations