Ukrainian Mathematical Journal

, Volume 67, Issue 10, pp 1484–1497 | Cite as

Branching Law for the Finite Subgroups of SL4ℂ and the Related Generalized Poincaré Polynomials

  • F. Butin
Within the framework of McKay correspondence, we determine, for every finite subgroup Γ of SL4ℂ, how the finite-dimensional irreducible representations of SL4ℂ decompose under the action of Γ.Let \( \mathfrak{h} \) be a Cartan subalgebra of \( \mathfrak{s}\mathfrak{l} \) 4ℂ and let ϖ 1, ϖ 2, and ϖ 3 be the corresponding fundamental weights. For (p, q, r) ∈ ℕ3, the restriction \( \pi \) p,q,r | Γ of the irreducible representation \( \pi \) p,q,r of the highest weight 1 +  2 +  3 of SL4ℂ decomposes as π p,q,r | Γ  = ⊕  i = 0 l m i (pqr i , where {\( \gamma \) 0,…, \( \gamma \) l} is the set of equivalence classes of irreducible finite-dimensional complex representations of Γ. We determine the multiplicities m i (p, q, r) and prove that the series
$$ {P}_{\varGamma }{\left(t,u,w\right)}_i={\displaystyle \sum_{p=0}^{\infty }{\displaystyle \sum_{q=0}^{\infty }{\displaystyle \sum_{r=0}^{\infty }{m}_i\left(p,q,r\right){t}^p{u}^q{w}^r}}} $$
are rational functions. This generalizes the results of Kostant for SL2ℂ and the results of our preceding works for SL3ℂ.


Irreducible Representation Formal Power Series Cartan Subalgebra Minimal Resolution Trivial Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bridgeland, A. King, and M. Reid, “The McKay correspondence as an equivalence of derived categories,” J. Amer. Math. Soc., 14, 535–554 (2001).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    F. Butin and G. S. Perets, “McKay correspondence and the branching law for finite subgroups of SL3ℂ,” J. Group Theory, 17, Issue 2, 191–251 (2014).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Y. Gomi, I. Nakamura, and K. Shinoda, “Coinvariant algebras of finite subgroups of SL3ℂ,” Can. J. Math., 56, 495–528 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Gonzalez-Sprinberg and J.-L. Verdier, “Construction géométrique de la correspondance de McKay,” An. Sci. de l’E. N. S., 4ème Sér., 16, No. 3, 409–449 (1983).Google Scholar
  5. 5.
    A. Hanany and Y.-H. He, “A monograph on the classification of the discrete subgroups of SU(4),” JHEP, 27 (2001).Google Scholar
  6. 6.
    B. Kostant, “The McKay correspondence, the coxeter element and representation theory,” SMF. Astérisque, Hors Sér., 209–255 (1985).Google Scholar
  7. 7.
    B. Kostant, “The Coxeter element and the branching law for the finite subgroups of SU(2),” Coxeter Legacy, Amer. Math. Soc., Providence, RI (2006), pp. 63–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Butin
    • 1
  1. 1.University of LyonLyonFrance

Personalised recommendations