Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 8, pp 1247–1263 | Cite as

Certain Regularity of the Entropy Solutions for Nonlinear Parabolic Equations with Irregular Data

Article
  • 39 Downloads

We introduce new sets of functions different both from the space introduced in [Ph. Bénilan, L. Boccardo, T. Gallouёt, R. Gariepy, M. Pierre, and J. L. Vazquez, Ann. Scuola Norm. Super. Pisa, 22, No. 2, 241–273 (1995)] and from the Rakotoson T -set introduced in [J. M. Rakotoson, Different. Integr. Equat., 6, No. 1, 27–36 (1993); J. Different. Equat., 111, No. 2, 458–471 (1994)]. In the new framework of sets, we present some summability results for the entropy solutions of nonlinear parabolic equations.

Keywords

Elliptic Equation Parabolic Equation Entropy Solution Nonlinear Elliptic Equation Nonlinear Parabolic Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Andreu, J. M. Mazon, S. Segura de Leon, and J. Toledo, “Existence and uniqueness for a degenerate parabolic equation with L 1 data,” Trans. Amer. Math. Soc., 351, No. 1, 285–306 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    E. Di Benedetto, Degenerate Parabolic Equations, Springer, New York (1993).CrossRefGoogle Scholar
  3. 3.
    Ph. Bénilan, L. Boccardo, T. Gallouёt, R. Gariepy, M. Pierre, and J. L. Vazquez, “An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations,” Ann. Scuola Norm. Super. Pisa, 22, No. 2, 241–273 (1995).Google Scholar
  4. 4.
    Ph. Benilan, H. Brezis, and M. G. Crandall, “A semilinear equation in L 1,” Ann. Scuola Norm. Super. Pisa, 2, 523–555 (1975).MathSciNetzbMATHGoogle Scholar
  5. 5.
    L. Boccardo, A. Dall’aglio, T. Gallouёt, and L. Orsina, “Nonlinear parabolic equations with measure data,” J. Funct. Anal., 147, 237–258 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    L. Boccardo and T. Gallouёt, “Nonlinear elliptic and parabolic equations involving measure data,” J. Funct. Anal., 87, 149–169 (1989).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. Dall’ Aglio and L. Orsina, “Existence results for some nonlinear parabolic equations with nonregular data,” Different. Integr. Equat., 5, No. 6, 1335–1354 (1992).MathSciNetzbMATHGoogle Scholar
  8. 8.
    J. L. Lions, Quelques Méthodes de Résolution des problémes aux Limites Nonlinéaires, Dunod, Paris (1969).zbMATHGoogle Scholar
  9. 9.
    A. Porretta, “Regularity for entropy solutions of a class of parabolic equations with nonregular initial datum,” Dynam. Systems Appl., 7, 53–72 (1998).MathSciNetzbMATHGoogle Scholar
  10. 10.
    A. Prignet, “Existence and uniqueness of “entropic” solutions of parabolic problems with L 1 data,” Nonlin. Anal. TMA, 28, No. 12, 1943–1954 (1997).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    J. M. Rakotoson, “Generalized solutions in a new type of sets for problems with measures as data,” Different. Integr. Equat., 6, No. 1, 27–36 (1993).MathSciNetzbMATHGoogle Scholar
  12. 12.
    J. M. Rakotoson, “T-sets and relaxed solutions for parabolic equations,” J. Different. Equat., 111, No. 2, 458–471 (1994).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    J. M. Rakotoson, “A compactness lemma for quasilinear problems: application to parabolic equations,” J. Funct. Anal., 106, No. 2, 358–374 (1992).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    J. M. Rakotoson, “A compactness result for quasilinear problems: application to parabolic equations with measure as data,” Appl. Math. Lett., 4, No. 3, 31–33 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    J. M. Rakotoson, “Some quasilinear parabolic equations,” Nonlin. Anal. TMA, 17, 1163–1175 (1991).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    S. Segura de Leon, “Estimates for solutions of nonlinear parabolic equations,” Boll. Unione Mat. Ital., 7, No. 11, 987–996 (1997).MathSciNetzbMATHGoogle Scholar
  17. 17.
    S. Segura de León and J. Toledo, “Regularity for entropy solutions of parabolic p-Laplacian equations,” Publ. Math., 43, 665–683 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    J. Heinonen, T. Kilpeläainen, and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Univ. Press, New York (1993).Google Scholar
  19. 19.
    F. Li, “Nonlinear degenerate elliptic equations with measure data,” Comment. Math. Univ. Carol., 48, No. 4, 647–658 (2007).MathSciNetzbMATHGoogle Scholar
  20. 20.
    F. Li, “Regularity for entropy solutions of a class of parabolic equations with irregular data,” Comment. Math. Univ. Carol., 48, No. 1, 69–82 (2007).MathSciNetzbMATHGoogle Scholar
  21. 21.
    F. Li, “Some regularity of entropy solutions for nonlinear elliptic equations,” Complex Variables Elliptic Equat., 58, No. 2, 281–291 (2013).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • F. Li
    • 1
  1. 1.School of Mathematical SciencesDalian University of TechnologyDalianChina

Personalised recommendations