Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 7, pp 1103–1110 | Cite as

Two Theorems of Complex Analysis

  • Yu. Yu. Trokhimchuk
Article
  • 53 Downloads

We prove two fundamental theorems of multidimensional complex analysis by the methods of this analysis without using the theory of subharmonic functions. As a single violation, we can mention the use of Green’s formula.

Keywords

Riemann Surface Lower Semicontinuous Subharmonic Function Ukrainian National Academy Boundary Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Kuratowski, Topology, Vol. 1, Academic Press, New York (1966).Google Scholar
  2. 2.
    C. Carathedory, “Untersuchungen über die konformen Abbildungen von festen und veranderlichen Gebieten,” Math. Ann., 72, 107–144 (1912).CrossRefMathSciNetGoogle Scholar
  3. 3.
    L. Bieberbach, “Über einen Satz des Herru Caratheodory,” Nachr. Ges. Wis. Göttingen. Math.-Phys. Kl (1913).Google Scholar
  4. 4.
    L. I. Volkovyskii, “Convergent sequences of Riemann surfaces,” Mat. Sb., 23(65), 361–382 (1948).MathSciNetGoogle Scholar
  5. 5.
    Yu. Yu. Trokhimchuk, “On the sequences of analytic functions and Riemann surfaces,” Ukr. Mat. Zh., 4, No. 4, 431–446 (1952).MathSciNetGoogle Scholar
  6. 6.
    Yu. Yu. Trokhimchuk, Differentiation, Inner Mappings, and Criteria of Analyticity [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2008).Google Scholar
  7. 7.
    S. Saks, Theory of the Integral, PWN, Warsaw (1937).Google Scholar
  8. 8.
    E. Heinz, “Ein elementares Beweis des Satzes von Rado–Behnke–Stein–Cartan über analitische Funktionen,” Math. Ann., 131, 258–259 (1956).CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yu. Yu. Trokhimchuk
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations