Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 4, pp 552–563 | Cite as

On The Boundary Behavior of Regular Solutions of the Degenerate Beltrami Equations

  • T. V. Lomako
Article
  • 28 Downloads

We study the boundary behavior of regular solutions to the degenerate Beltrami equations with constraints of the integral type imposed on the coefficient.

Keywords

Convex Function Regular Solution Quasiconformal Mapping Jordan Curve Boundary Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. V. Lomako, “On the theory of convergence and compactness for Beltrami equations,” Ukr. Math. J., 63, No. 3, 341–349 (2011).CrossRefMathSciNetGoogle Scholar
  2. 2.
    V. Ya. Gutlyanskii, T. V. Lomako, and V. I. Ryazanov, “To the theory of variational method for Beltrami equations,” Ukr. Mat. Visn., 8, No. 4, 513–536 (2011); English translation: J. Math. Sci., 182, No. 1, 37–54 (2012).Google Scholar
  3. 3.
    T. Lomako and V. Ryazanov, “On a variational method for the Beltrami equations,” Ann. Univ. Bucharest. Ser. Math., 60, No. 2, 3–14 (2011).Google Scholar
  4. 4.
    V. Ya. Gutlyanskii and V. I. Ryazanov, “On asymptotically conformal curves,” Complex Variables, 25, 357–366 (1994).Google Scholar
  5. 5.
    V. Ya. Gutlyanskii and V. I. Ryazanov, “To the theory of local behavior of quasiconformal mappings,” Izv. RAN, Ser. Mat., 59, No. 3, 31–58 (1995).Google Scholar
  6. 6.
    V. Ya. Gutlyanskii and V. I. Ryazanov, Geometric and Topological Theory of Functions and Mappings [in Russian], Kiev, Naukova Dumka (2011).Google Scholar
  7. 7.
    E. A. Sevost’yanov, “On the boundary behavior of open discrete mappings with unbounded characteristic,” Ukr. Math. J., 64, No. 6, 979–984 (2012).CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    E. A. Sevost’yanov, “On equicontinuous families of mappings without values in variable sets,” Ukr. Math. J., 66, No. 3, 404–414 (2014).CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, The Beltrami Equation: A Geometric Approach, Developments in Mathematics. V. 26, Springer, New York (2012).Google Scholar
  10. 10.
    V. Gutlyanskii, V. Ryazanov, U. Srebro, and E. Yakubov, “On recent advances in the degenerate Beltrami equations,” Ukr. Mat. Vesn., 7, No. 4, 467–515 (2010).MathSciNetGoogle Scholar
  11. 11.
    W. Rudin, Function Theory in Polydiscs. Math. Lect. Notes Ser., Benjamin, Inc., New-York–Amsterdam (1969).Google Scholar
  12. 12.
    P. P. Belinskii, General Properties of Quasiconformal Mappings [in Russian], Novosibirsk, Nauka (1974).Google Scholar
  13. 13.
    V. I. Ryazanov and E. A. Sevost’yanov, “Normal families of space mappings,” Sib. Elektron. Mat. Izv., 3, 216–231 (2006).MathSciNetzbMATHGoogle Scholar
  14. 14.
    O. Martio, V. Ryazanov, U. Srebro, and E. Yakubov, Moduli in Modern Mapping Theory. Springer Monographs in Mathematics, Springer, New York (2009).Google Scholar
  15. 15.
    K. Kuratowski, Topology, 1, New York, Academic Press (1966).Google Scholar
  16. 16.
    J. Becker and Chr. Pommerenke, “Uber die quasikonforme Fortsetzung schlichten Funktionen,” Math. Z., 161, No. 1, 69–80 (1978).Google Scholar
  17. 17.
    E. Lindelöf, “Sur la repre’sentation conforme d’une aire simplement connexe sur l’aire d’un cercle,” Quatrie’me Congre’s des Mathe’maticiens Scandinaves, Stockholm (1916), pp. 59–90.Google Scholar
  18. 18.
    V. Gutlyanskii, O. Martio, and V. Ryazanov, “On a theorem of Lindelöf,” Ann. Univ. Mariae Curie-Sklodowska. Sect. A, 65, No. 2, 45–51 (2011).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. V. Lomako
    • 1
    • 2
  1. 1.Institute of Applied Mathematics and MechanicsUkrainian National Academy of SciencesDonetskUkraine
  2. 2.Institute of MathematicsUkrainian National Academy of SciencesKievUkraine

Personalised recommendations