Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 4, pp 506–514 | Cite as

Infinite Groups with Complemented Non-Abelian Subgroups

  • P. P. Baryshovets
Article
  • 28 Downloads

We obtain a description of locally finite A -groups with complemented non-Abelian subgroups.

Keywords

Normal Subgroup Direct Product Finite Group Factorizable Group Sylow Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Hall, “Complemented groups,” J. London Math. Soc., 12, 201–204 (1937).CrossRefGoogle Scholar
  2. 2.
    N. V. Baeva, “Completely factorizable groups,” Dokl. Akad. Nauk SSSR, 92, No. 5, 877–880 (1953).MathSciNetzbMATHGoogle Scholar
  3. 3.
    N. V. Chernikova, “Groups with complemented subgroups,” Mat. Sb., 39. 273–292 (1956).Google Scholar
  4. 4.
    N. V. Chernikova, “On the main theorem on completely factorizable groups,” in: Groups with Systems of Complemented Subgroups [in Russian], Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Kiev (1972), pp. 49–58.Google Scholar
  5. 5.
    S. N. Chernikov, “Groups with systems of complemented subgroups,” Mat. Sb., 35, 93–128 (1954).MathSciNetGoogle Scholar
  6. 6.
    Yu. M. Gorchakov, “Primitive factorizable groups,” Uchen. Zap. Perm. Univ., 17, Issue 2, 15–31 (1960).Google Scholar
  7. 7.
    S. N. Chernikov, “Investigation of groups with given properties of the subgroups,” Ukr. Mat. Zh., 21, No. 2, 193–209 (1969); English translation: Ukr. Math. J., 21, No. 2, 160–172 (1969).Google Scholar
  8. 8.
    O. N. Zub, “Groups whose noncyclic subgroups are complemented,” in: Groups with Restrictions on Subgroups [in Russian], Naukova Dumka, Kiev (1971), pp. 134–159.Google Scholar
  9. 9.
    Ya. P. Sysak, “Finite elementary factorizable groups,” Ukr. Mat. Zh., 29, No. 1, 67–76 (1977); English translation: Ukr. Math. J., 29, No. 1, 51–58 (1977).Google Scholar
  10. 10.
    É. S. Alekseeva, “Infinite nonprimarily factorizable groups,” in: Some Problems of the Theory of Groups [in Russian], Institute of Mathematics of the Academy of Sciences of Ukrainian SSR, Kiev (1975), pp. 123–140.Google Scholar
  11. 11.
    N. M. Suchkov, “Some linear groups with complemented subgroups,” Algebra Logika, 16, No. 5, 603–620 (1977).Google Scholar
  12. 12.
    P. P. Baryshovets, “Finite non-Abelian groups with complemented non-Abelian subgroups,” Ukr. Mat. Zh., 29, No. 6, 733–737 (1977); English translation: Ukr. Math. J., 29, No. 6, 541–544 (1977).Google Scholar
  13. 13.
    P. P. Baryshovets, “Finite non-Abelian 2-groups with complemented non-Abelian subgroups,” in: Group-Theoretic Investigations [in Russian], Naukova Dumka, Kiev (1978), pp. 34–50.Google Scholar
  14. 14.
    P. P. Baryshovets, “A class of finite groups with complemented non-Abelian subgroups,” Ukr. Mat. Zh., 33, No. 3, 291–296 (1981); English translation: Ukr. Math. J., 33, No. 3, 225–229 (1981).Google Scholar
  15. 15.
    P. P. Baryshovets, “On infinite groups with complemented non-Abelian subgroups,” Ukr. Mat. Zh., 65, No. 11, 1443–1455 (2013); English translation: Ukr. Math. J., 65, No. 11, 1599–1611 (2014).Google Scholar
  16. 16.
    S. N. Chernikov, Groups with Given Properties of a System of Subgroups [in Russian], Nauka, Moscow (1980).Google Scholar
  17. 17.
    B. I. Mishchenko, “Locally graded groups with complemented non-Abelian subgroups,” Ukr. Mat. Zh., 43, No. 7-8, 1098–1100 (1991); English translation: Ukr. Math. J., 43, No. 7-8, 1031–1033 (1991).Google Scholar
  18. 18.
    D. Taunt, “On A-groups,” Proc. Cambridge Phil. Soc., 45, No. 1, 24–42 (1949).CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    G. A. Malan'ina, V. I. Khlebutina, and G. S. Shevtsov, “Finite minimal and not completely factorizable groups,” Mat. Zametki, 12, No. 2, 157–162 (1972).MathSciNetzbMATHGoogle Scholar
  20. 20.
    A. G. Kurosh, The Theory of Groups [in Russian], Nauka, Moscow (1967).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • P. P. Baryshovets
    • 1
  1. 1.National Aircraft UniversityKievUkraine

Personalised recommendations