Ukrainian Mathematical Journal

, Volume 67, Issue 3, pp 372–380 | Cite as

On One Uniqueness Theorem for a Weighted Hardy Space

  • T. I. Hishchak
A uniqueness theorem is proved for the space of functions analytic in the right half plane and satisfying the condition
$$ \underset{\left|\upvarphi \right|<\frac{\uppi}{2}}{ \sup}\left\{{\displaystyle \underset{0}{\overset{+\infty }{\int }}{\left|f\left(r{e}^{i\varphi}\right)\right|}^p{e}^{-p\sigma r\left| \sin \varphi \right|}dr}\right\}<+\infty . $$


Hardy Space Half Plane Uniqueness Theorem Riemann Problem Interpolation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs (1962).zbMATHGoogle Scholar
  2. 2.
    O. Duren, Theory of H p Space, Academic Press, New York (1970).Google Scholar
  3. 3.
    P. Koosis, Introduction to H p Spaces.With an Appendix onWolff’s Proof of the Corona Theorem, Cambridge Univ. Press, Cambridge (1980).Google Scholar
  4. 4.
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York (1981).zbMATHGoogle Scholar
  5. 5.
    B. V. Vynnyts’kyi and V. M. Dil’nyi, “On necessary conditions for the existence of solutions of one equation of the convolution type,” Mat. Stud., 16, No. 1, 61–70 (2001).MathSciNetGoogle Scholar
  6. 6.
    M. A. Fedorov and A. F. Grishin, “Some questions of the Nevanlinna theory for the complex half plane,” Math. Phys., Anal. Geom., 1, No. 3, 223–271 (1998).Google Scholar
  7. 7.
    B. V. Vinnitskii, “On zeros of functions analytic in a half plane and the completeness of systems of exponents,” Ukr. Mat. Zh., 46, No. 5, 484–500 (1994); English translation: Ukr. Math. J., 46, No. 5, 514–532 (1994).Google Scholar
  8. 8.
    A. M. Sedletskii, “Equivalent definition of the spaces H p in a half plane and some applications,” Mat. Sb., 96, No. 1, 75–82 (1975).MathSciNetGoogle Scholar
  9. 9.
    V. P. Gurarii, “Harmonic analysis in spaces with weight,” Tr. Mosk. Mat. Obshch., 35, 21–76 (1976).MathSciNetGoogle Scholar
  10. 10.
    N. V. Govorov, Boundary-Value Riemann Problem with Infinite Index [in Russian], Nauka, Moscow (1986).Google Scholar
  11. 11.
    B. Vynnytskyi and V. Sharan, “On the factorization of one class of functions analytic in the half plane,” Mat. Stud., 14, No. 1, 41–48 (2000).MathSciNetGoogle Scholar
  12. 12.
    V. M. Martirosian, “On a theorem of Djrbasian of the Phragmen–Lindel¨of type,” Math. Nachr., 144, 21–27 (1997).MathSciNetCrossRefGoogle Scholar
  13. 13.
    V. M. Martirosyan, “Closure and basis property of some biorthogonal systems and the solution of a multiple interpolation problem in angular domains,” Izv. Akad. Nauk Arm. SSR, Ser. Mat., 12, No. 5–6 (1978).Google Scholar
  14. 14.
    Yu. I. Lyubarskii, “Series of exponents in Smirnov spaces and the interpolation by entire functions of special classes,” Izv. Akad. Nauk SSSR, 52, No. 3, 559–580 (1988).MathSciNetGoogle Scholar
  15. 15.
    V. M. Dil’nyi, “On the equivalence of some conditions for weighted Hardy spaces,” Ukr. Mat. Zh., 58, No. 9, 1257–1263 (2006); English translation: Ukr. Math. J., 58, No. 9, 1425–1432 (2006).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. I. Hishchak
    • 1
  1. 1.Franko Drohobych Pedagogic UniversityDrohobychUkraine

Personalised recommendations