Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 2, pp 314–322 | Cite as

Smoothing of the Singularities of Functions Whose Integrals over the Balls on a Sphere are Zero

  • Vit. V. Volchkov
  • I. M. Savost’yanova
Brief Communications
  • 23 Downloads

We study functions defined on a sphere with prickled point whose integrals over all admissible “hemispheres” are equal to zero. A condition is established under which the point is a removable set for this class of functions. It is shown that this condition cannot be omitted or noticeably weakened.

Keywords

Symmetric Space Heisenberg Group Quasiconformal Mapping Integral Geometry Radon Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. V. Shabat, Introduction to Complex Analysis [in Russian], Vol. 2, Nauka, Moscow (1985).Google Scholar
  2. 2.
    A.V. Sychev, Moduli and Spatial Quasiconformal Mappings [in Russian], Nauka, Novosibirsk (1983).Google Scholar
  3. 3.
    S. Axler, P. Bourdon, and W. Ramey, Harmonic Function Theory, Springer, New York (1992).CrossRefzbMATHGoogle Scholar
  4. 4.
    A. I. Markushevich, Selected Chapters of the Theory of Analytic Functions [in Russian], Nauka, Moscow (1976).Google Scholar
  5. 5.
    Yu. Yu. Trokhimchuk, Continuous Mappings and Conditions of Monogeneity [in Russian], Fizmatgiz, Moscow (1963).Google Scholar
  6. 6.
    S. Helgason, Integral Geometry and Radon Transforms, Springer, New York (2010).Google Scholar
  7. 7.
    V. V. Volchkov, Integral Geometry and Convolution Equations, Kluwer, Dordrecht (2003).CrossRefzbMATHGoogle Scholar
  8. 8.
    V. V. Volchkov and Vit. V. Volchkov, Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group, Springer, London (2009).Google Scholar
  9. 9.
    V. V. Volchkov and Vit. V. Volchkov, Offbeat Integral Geometry on Symmetric Spaces, Birkh¨auser, Basel (2013).Google Scholar
  10. 10.
    V. V. Volchkov, “Solution of the problem of support for some classes of functions,” Mat. Sb., 188, No. 9, 13–30 (1997).MathSciNetCrossRefGoogle Scholar
  11. 11.
    P. Funk, “Über eine geometrische Anwendung der Abelschen Integralgleichung,” Math. Ann., 77, 129–135 (1916).MathSciNetCrossRefGoogle Scholar
  12. 12.
    B. Rubin, “Inversion and characterization of the hemispherical transform,” J. D’Analyse Math., 77, 105–128 (1999).CrossRefzbMATHGoogle Scholar
  13. 13.
    S. Campi, “On the reconstruction of a star-shaped body from its ‘half-volumes’,” J. Austral. Math. Soc. (Ser. A), 37, 243–257 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    H. Bateman and A. Erdélyi, Higher Transcendental Functions, Vol. 1, Mc Graw-Hill, New York (1954).Google Scholar
  15. 15.
    A. P. Prudnikov, Yu. A. Brychkov, and O. I. Marichev, Integrals and Series. Additional Chapters [in Russian], Nauka, Moscow (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Vit. V. Volchkov
    • 1
  • I. M. Savost’yanova
    • 1
  1. 1.Donetsk National UniversityDonetskUkraine

Personalised recommendations