Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 2, pp 267–282 | Cite as

Almost Periodic Solutions of Nonlinear Equations that are not Necessarily Almost Periodic in Bochner’s Sense

  • V. Yu. Slyusarchuk
Article

We introduce a new class of almost periodic operators and establish conditions for the existence of almost periodic solutions of nonlinear equations that are not necessarily almost periodic in Bochner’s sense.

Keywords

Banach Space Periodic Solution Nonlinear Equation Difference Equation Arbitrary Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bochner, “Beitrage zur Theorie der fastperiodischen. I Teil. Funktionen einer Variablen,” Math. Ann., 96, 119–147 (1927); “Beitrage zur Theorie der fastperiodischen. II Teil. Funktionen mehrerer Variablen,” Math. Ann., 96, 383–409 (1927).Google Scholar
  2. 2.
    B. M. Levitan, Almost Periodic Functions [in Russian], Gostekhizdat, Moscow (1953).Google Scholar
  3. 3.
    L. V. Kantorovich and G. P. Akilov, Functional Analysis [in Russian], Nauka, Moscow (1977).Google Scholar
  4. 4.
    L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).Google Scholar
  5. 5.
    V. Yu. Slyusarchuk, “Conditions of almost periodicity of bounded solutions for nonlinear difference equations with continuous argument,” Nelin. Kolyv., 16, No. 1, 118–124 (2013).MathSciNetGoogle Scholar
  6. 6.
    V. Yu. Slyusarchuk, “Criterion for the existence of almost periodic solutions of nonlinear difference equations without using the H-classes of these equations,” Bukovyn. Mat. Zh., 1, No. 1-2, 136–138 (2013).Google Scholar
  7. 7.
    V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations with discrete argument,” Nelin. Kolyv., 16, No. 3, 416–425 (2013).Google Scholar
  8. 8.
    V. Yu. Slyusarchuk, “Conditions for the existence of almost periodic solutions of nonlinear difference equations in Banach spaces,” Ukr. Mat., Zh., 65, No. 2, 307–312 (2013); English translation: Ukr. Math. J., 65, No. 2, 341–347 (2013).Google Scholar
  9. 9.
    L. Amerio, “Soluzioni quasiperiodiche, o limital, di sistemi differenziali non lineari quasi-periodici, o limitati,” Ann. Mat. Pura Appl., 39, 97–119 (1955).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    B. P. Demidovich, Lectures on the Mathematical Theory of Stability [in Russian], Nauka, Moscow (1967).Google Scholar
  11. 11.
    Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1970).Google Scholar
  12. 12.
    J. Favard, “Sur les équations différentielles à coefficients presquepériodiques,” Acta Math., 51, 31–81 (1927).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    É. Mukhamadiev, “On the invertibility of functional operators in the space of functions bounded on the axis,” Mat. Zametki, 11, No. 3, 269–274 (1972).Google Scholar
  14. 14.
    É. Mukhamadiev, “Investigations into the theory of periodic and bounded solutions of differential equations,” Mat. Zametki, 30, No. 3, 443–460 (1981).MathSciNetzbMATHGoogle Scholar
  15. 15.
    V. E. Slyusarchuk, “Invertibility of almost periodic c-continuous functional operators,” Mat. Sb., 116(158), No. 4(12), 483–501 (1981).Google Scholar
  16. 16.
    V. E. Slyusarchuk, “Invertibility of nonautonomous functional-differential operators,” Mat. Sb., 130(172), No. 1(5), 86–104 (1986).Google Scholar
  17. 17.
    V. E. Slyusarchuk, “Necessary and sufficient conditions for the invertibility of nonautonomous functional-differential operators,” Mat. Zametki, 42, No. 2, 262–267 (1987).MathSciNetzbMATHGoogle Scholar
  18. 18.
    L. Amerio, “Sull equazioni differenziali quasi-periodiche astratte,” Ric. Mat., 30, 288–301 (1960).MathSciNetzbMATHGoogle Scholar
  19. 19.
    V. V. Zhikov, “Proof of the Favard theorem on the existence of almost periodic solutions for an arbitrary Banach space,” Mat. Zametki, 23, No. 1, 121–126 (1978).MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. Yu. Slyusarchuk
    • 1
  1. 1.National University of Water Management and Natural ResourcesRivneUkraine

Personalised recommendations