Advertisement

Ukrainian Mathematical Journal

, Volume 67, Issue 2, pp 167–185 | Cite as

Integrability Analysis of a Two-Component Burgers-Type Hierarchy

  • D. Blackmore
  • A. K. Prykarpatsky
  • E. Özçağ
  • K. Soltanov
Article
  • 57 Downloads

The Lax integrability of a two-component polynomial Burgers-type dynamical system is analyzed by using a differential-algebraic approach. Its linear adjoint matrix Lax representation is constructed. A related recursive operator and an infinite hierarchy of nonlinear Lax integrable dynamical systems of the Burgers–Korteweg–de-Vries type are obtained by the gradient-holonomic technique. The corresponding Lax representations are presented.

Keywords

Poissonian Structure Differential Functional Equation Recursive Operator Differential Algebra Generalize Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Blackmore, A. K. Prykarpatsky, and V. H. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics,World Scientific, New York (2011).zbMATHCrossRefGoogle Scholar
  2. 2.
    D. Blackmore, Yu. A. Prykarpatsky, N. Bogolubov (Jr.), and A. Prykarpatsky, “Integrability of and differential-algebraic structures for spatially 1D hydrodynamical systems of Riemann type,” Chaos, Solitons and Fractals, 59, 59–81 (2014).Google Scholar
  3. 3.
    M. Błaszak, Bi-Hamiltonian Dynamical Systems, Springer, New York (1998).CrossRefGoogle Scholar
  4. 4.
    N. N. Bogolubov (Jr.) and A. K. Prykarpatsky, “Complete integrability of the nonlinear Ito and Benney–Kaup systems: gradient algorithm and Lax representation,” Theor. Math. Phys., 67, No. 3, 586–596 (1986).Google Scholar
  5. 5.
    T. Chen, L.-L. Zhu, and L. Zhang , “The generalized Broer–Kaup–Kupershmidt system and its Hamiltonian extension,” Appl. Math. Sci., 5, No. 76, 3767–3780 (2011).zbMATHMathSciNetGoogle Scholar
  6. 6.
    E. A. Coddington and N. Levinson, Theory of Differential Equations, McGraw-Hill, New York (1955).zbMATHGoogle Scholar
  7. 7.
    L. D. Faddeev and L. Takhtadjan, Hamiltonian Methods in the Theory of Solitons, Springer, New York; Berlin (2000).Google Scholar
  8. 8.
    M. V. Foursov, “On integrable coupled Burgers-type equation,” Phys. Lett. A, 272, 57–64 (2000).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    A. J. Fritz and B. Troth, “Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas,” Comm. Math. Phys., 249, Issue 1, 1–27 (2004).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. M. Gelfand and L. A. Dickey, “Integrable nonlinear equations and Liouville theorem,” Funct. Anal. Appl., 13, 8–20 (1979).Google Scholar
  11. 11.
    I. M. Gelfand and L. A. Dickey, “The calculus of jets and nonlinear Hamiltonian systems,” Funct. Anal. Appl., 12, Issue 2, 81–94 (1978).CrossRefGoogle Scholar
  12. 12.
    I. M. Gelfand and L. A. Dickey, “A Lie algebra structure in a formal variational calculation,” Funct. Anal. Appl., 10, Issue 1, 16–22 (1976).CrossRefGoogle Scholar
  13. 13.
    I. M. Gelfand and L. A. Dickey, “The resolvent and Hamiltonian systems,” Funct. Anal. Appl., 11, Issue 2, 93–105 (1977).CrossRefGoogle Scholar
  14. 14.
    I. M. Gelfand, Yu. I. Manin, and M. A. Shubin, “Poisson brackets and the kernel of the variational derivative in the formal calculus of variations,” Funct. Anal. Appl., 10, Issue 4, 274–278 (1976).CrossRefGoogle Scholar
  15. 15.
    C. Godbillon, Geometri Differentielle et Mecanique Analytique, Hermann, Paris (1969).Google Scholar
  16. 16.
    N. H. Ibragimov and A. B. Shabat, “Infinite Lie–Backlund algebras,” Funct. Anal. Appl., 14, 313–315 (1980).CrossRefGoogle Scholar
  17. 17.
    I. Kaplanski, Introduction to Differential Algebra, New York (1957).Google Scholar
  18. 18.
    B. A. Kupershmidt, “Dark equations,” J. Nonlin. Math. Phys., 8, No. 3, 363–445 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    B. A. Kupershmidt, “Mathematics of dispersive water waves,” Comm. Math. Phys., 99, 51–73 (1985).zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    P. D. Lax, “Almost periodic solutions of the KdV equation,” Source: SIAM Rev., 18, No. 3, 351–375 (1976).zbMATHMathSciNetGoogle Scholar
  21. 21.
    J. L. Lions, Quelgues Methodes de Resolution des Problemes aux Limites Non Lineaires, Dunod, Paris (1969).Google Scholar
  22. 22.
    W. X. Ma, “A hierarchy of coupled Burgers systems possessing a hereditary structure,” J. Phys. A: Math. Gen., 26, L1169–L1174 (1993).CrossRefGoogle Scholar
  23. 23.
    A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “The symmetry approach to the classification of nonlinear equations. Complete list of integrable systems,” Russ. Math. Surv., 42, No. 4, 1–63 (1987).MathSciNetCrossRefGoogle Scholar
  24. 24.
    A.V. Mikhailov, A. B. Shabat, and R. I. Yamilov, “Extension of the moduli of invertible transformations. Classification of integrable systems,” Comm. Math. Phys., 115, 1–19 (1988).MathSciNetCrossRefGoogle Scholar
  25. 25.
    Theory of Solitons: the Inverse Scattering Method, S. P. Novikov (editor), Springer (1984).Google Scholar
  26. 26.
    P. Olver, Applications of Lie Groups to Differential Equations, 2nd edn., Springer, New York (1993).zbMATHCrossRefGoogle Scholar
  27. 27.
    A. K. Prykarpatsky, O. D. Artemovych, Z. Popowicz, and M. V. Pavlov, “Differential-algebraic integrability analysis of the generalized Riemann type and Korteweg–de Vries hydrodynamical equations,” J. Phys. A: Math. Theor., 43, 295–205 (2010).MathSciNetCrossRefGoogle Scholar
  28. 28.
    Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic and bi-Hamiltonian integrability analysis of the Riemann type hierarchy revisited,” J. Math. Phys., 53 (2012); doi  10.1063/1.4761821.
  29. 29.
    Yu. A. Prykarpatsky, O. D. Artemovych, M. Pavlov, and A. K. Prykarpatsky, “The differential-algebraic integrability analysis of symplectic and Lax type structures related with the hydrodynamic Riemann type systems,” Repts Math. Phys., 71, No. 3, 305–351 (2013).zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Yu. A. Prykarpatsky, “Finite dimensional local and nonlocal reductions of one type of hydrodynamic systems,” Repts Math. Phys., 50, No. 3, 349–360 (2002).zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    A. Prykarpatsky and I. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects, Kluwer, Dordrecht, the Netherlands (1998).zbMATHCrossRefGoogle Scholar
  32. 32.
    J. F. Ritt, “Differential algebra,” AMS-Colloq. Publ., Dover Publ., New York (1966), 33.Google Scholar
  33. 33.
    M. Shubin, Lectures on Mathematical Physics, Moscow State University, Moscow (2001).Google Scholar
  34. 34.
    V. V. Sokolov and T. Wolf, “Classification of integrable polynomial vector evolution equations,” J. Phys. A: Math. Gen., 34, 11139–11148 (2001).zbMATHMathSciNetCrossRefGoogle Scholar
  35. 35.
    A. Prykarpatsky, K. Soltanov, and E. Özçağ, “Differential-algebraic approach to constructing representations of commuting differentiations in functional spaces and its application to nonlinear integrable dynamical systems,” Comm. Nonlinear Sci., Numer. Simulat., 19, 1644–1649 (2014).CrossRefGoogle Scholar
  36. 36.
    H. Tasso, “Hamiltonian formulation of odd Burgers hierarchy,” J. Phys. A: Math. Gen., 29, 7779–7784 (1996).zbMATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    T. Tsuchida and T. Wolf, “Classification of polynomial integrable systems of mixed scalar and vector evolution equations. I,” J. Phys. A: Math. Gen., 38, 7691–7733 (2005).zbMATHMathSciNetCrossRefGoogle Scholar
  38. 38.
    G. B. Whitham, Linear and Nonlinear Waves, Wiley, New York (1974).zbMATHGoogle Scholar
  39. 39.
    G. Wilson, “On the quasi-Hamiltonian formalism of the KdV equation,” Phys. Lett., 132, No. 8/9, 445–450 (1988).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Blackmore
    • 1
  • A. K. Prykarpatsky
    • 2
    • 3
  • E. Özçağ
    • 4
  • K. Soltanov
    • 4
  1. 1.New Jersey Institute of TechnologyNewarkUSA
  2. 2.AGH University of Science and TechnologyKrakwPoland
  3. 3.Franko Drohobych State Pedagogical UniversityDrohobychUkraine
  4. 4.Hacettepe UniversityAnkaraTurkey

Personalised recommendations