# Asymptotic Multiphase Solitonlike Solutions of the Cauchy Problem for a Singularly Perturbed Korteweg–de-Vries Equation with Variable Coefficients

Article

First Online:

- 37 Downloads

We describe the set of initial conditions under which the Cauchy problem for a singularly perturbed Korteweg–de-Vries equation with variable coefficients has an asymptotic multiphase solitonlike solution. The notion of manifold of initial values for which the above-mentioned solution exists is proposed for the analyzed Cauchy problem. The statements on the estimation of the difference between the exact and constructed asymptotic solutions are proved for the Cauchy problem.

## Keywords

Cauchy Problem Asymptotic Solution Burger Equation Vries Equation Singular Part
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## Preview

Unable to display preview. Download preview PDF.

## References

- 1.P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. I,”
*Comm. Pure Appl. Math.*,**36**, No. 3, 253–290 (1983).zbMATHMathSciNetCrossRefGoogle Scholar - 2.P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. II,”
*Comm. Pure Appl. Math.*,**36**, No. 5, 571–593 (1983).zbMATHMathSciNetCrossRefGoogle Scholar - 3.P. D. Lax and C. D. Levermore, “The small dispersion limit of the Korteweg–de Vries equation. III,”
*Comm. Pure Appl. Math.*,**36**, No. 6, 809–829 (1983).zbMATHMathSciNetCrossRefGoogle Scholar - 4.E. Hopf, “The partial differential equation
*u*_{t}+*uu*_{x}=*μu*_{xx}*,*”*Comm. Pure Appl. Math.*,**3**, 201–230 (1950).zbMATHMathSciNetCrossRefGoogle Scholar - 5.J. D. Cole, “On a quasi-linear parabolic equation occurring in aerodynamics,”
*Quart. Appl. Math.*,**9**, 225–236 (1951).zbMATHMathSciNetGoogle Scholar - 6.D. W. McLaughlin and J. A. Strain, “Computing the weak limit of KdV,”
*Comm. Pure Appl. Math.*,**47**, No. 10, 1319–1364 (1994).zbMATHMathSciNetCrossRefGoogle Scholar - 7.V. P. Maslov and G. A. Omel’yanov, “Asymptotic solitonlike solutions of equations with small dispersion,”
*Usp. Mat. Nauk*,**36**, Issue 3 (219), 63–124 (1981).zbMATHMathSciNetGoogle Scholar - 8.C. S. Gardner, J. M. Greene, M. D. Kruscal, and R. M. Miura, “Korteweg–de Vries equation and generalizations. VI. Methods for exact solutions,”
*Comm. Pure Appl. Math.*,**27**, 97–133 (1974).zbMATHMathSciNetCrossRefGoogle Scholar - 9.R. Hirota, “Exact solutions of the Korteweg–de Vries equation for multiple collisions of solutions,”
*Phys. Rev. Lett.*,**27**, 1192–1194 (1971).zbMATHCrossRefGoogle Scholar - 10.A. Sjoberg, “On the Korteweg–de Vries equation: existence and uniqueness,”
*J. Math. Anal. Appl.*,**29**, No. 3, 569–579 (1970).MathSciNetCrossRefGoogle Scholar - 11.E. Ya. Khruslov, “Asymptotics of the solution of the Cauchy problem for the Korteweg–de-Vries equation with step-like initial data,”
*Mat. Sb.*,**99**(**141**), No. 2, 261–281 (1976).Google Scholar - 12.I. Egorova, K. Grunert, and G. Teschl, “On Cauchy problem for the Korteweg–de Vries equation with step-like finite gap initial data I. Schwartz-type perturbations,”
*Nonlinearity*,**22**, 1431–1457 (2009).zbMATHMathSciNetCrossRefGoogle Scholar - 13.V. B. Baranetskii and V. P. Kotlyarov, “Asymptotic behavior in the region of the back front of a solution of the KdV equation with ‘step-like’ initial condition,”
*Teor. Mat. Fiz.*,**126**, No. 2, 214–227 (2001).MathSciNetCrossRefGoogle Scholar - 14.T. Kato, “On the Korteweg–de Vries equation,”
*Manuscr. Math.*,**28**, 89–99 (1979).zbMATHCrossRefGoogle Scholar - 15.V. M. Yakupov, “On the Cauchy problem for the Korteweg–de-Vries equation,”
*Differents. Uravn.*,**11**, No. 3, 556–561 (1976).Google Scholar - 16.V. A. Arkad’ev, A. K. Pogrebkov, and M. K. Polivanov, “Singular solutions of the KdV equation and the method of inverse scattering problem,”
*Zap. Nauchn. Sem. LOMI*,**133**, 17–37 (1984).zbMATHMathSciNetGoogle Scholar - 17.S. I. Pokhozhaev, “On singular solutions of the Korteweg–de-Vries equation,”
*Mat. Zametki*,**88**, Issue 5, 770–777 (2010).MathSciNetCrossRefGoogle Scholar - 18.S. I. Pokhozhaev, “On the absence of global solutions of the Korteweg–de-Vries equation,”
*Sovrem. Mat. Fundament. Napr.*,**39**, 141–150 (2011).Google Scholar - 19.A.V. Faminskii, “ Cauchy problem for the Korteweg–de-Vries equation and its generalizations,”
*Petrovskii Tr. Sem.*, Issue 13, 56–105 (1988).Google Scholar - 20.S. N. Kruzhkov and A. V. Faminskii, “Generalized solutions of the Cauchy problem for the Korteweg–de-Vries equation,”
*Mat. Sb.*,**120**, No 3, 396–425 (1983).MathSciNetGoogle Scholar - 21.A.V. Faminskii and I. Yu. Bashlykova, “Weak solutions to one initial-boundary-value problem with three boundary conditions for quasilinear evolution equations of the third order,”
*Ukr. Math. Bull.*,**5**, No. 1, 83–98 (2008).MathSciNetGoogle Scholar - 22.V. H. Samoylenko and Yu. I. Samoylenko, “Two-phase solitonlike solutions of the Cauchy problem for a singularly perturbed Korteweg–de-Vries equation with variable coefficients,”
*Ukr. Mat. Zh.*,**65**, No. 11, 1515–1530 (2013);**English translation:***Ukr. Math. J.*,**65**, No. 11, 1681–1697 (2014).Google Scholar - 23.V. P. Maslov,
*Complex WKB Method in Nonlinear Equations*[in Russian], Nauka, Moscow (1977).Google Scholar - 24.V. H. Samoylenko and Yu. I. Samoylenko, “Asymptotic
*m*-phase solitonlike solutions of a singularly perturbed Korteweg–de-Vries equation with variable coefficients,”*Ukr. Mat. Zh.*,**64**, No. 7, 970–987 (2012);**English translation:***Ukr. Math. J.*,**64**, No. 7, 1109–1127 (2012).Google Scholar - 25.Yu. I. Samoylenko, “One-phase solitonlike solutions of the Cauchy problem for the singularly perturbed Korteweg–de-Vries equation with variable coefficients (special initial conditions),” in:
*Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences*[in Ukrainian], Kyiv,**9**, No. 2 (2012), pp. 327–340.Google Scholar - 26.M. A. Shubin,
*Pseudodifferential Operators and Spectral Theory*[in Russian], Nauka, Moscow (1978).Google Scholar - 27.V. P. Maslov and G. A. Omel’yanov,
*Geometric Asymptotics for PDE. I*, American Mathematical Society, Providence, RI (2001).zbMATHGoogle Scholar - 28.Yu. I. Samoylenko, “Existence of a solution of the first-order partial differential equation with quadratic nonlinearity in the space of rapidly decreasing functions and the properties of this solution,” in:
*Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences*[in Ukrainian], Kyiv,**11**, No. 1 (2014), pp. 316–325.Google Scholar - 29.
*Mathematical Encyclopedia*[in Russian], Vol. 1, Sovetskaya Éntsiklopediya, Moscow (1977).Google Scholar

## Copyright information

© Springer Science+Business Media New York 2015