Ukrainian Mathematical Journal

, Volume 66, Issue 12, pp 1812–1822 | Cite as

On Rings with Weakly Prime Centers


We introduce a class of rings obtained as a generalization of rings with prime centers. A ring R is called weakly prime center (or simply WPC) if ab ϵ Z(R) implies that aRb is an ideal of R, where Z(R) stands for the center of R. The structure and properties of these rings are studied and the relationships between prime center rings, strongly regular rings, and WPC rings are discussed, parallel with the relationship between the WPC and commutativity.


Left Ideal Homomorphic Image Exchange Ring Division Ring Stable Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. M. C. Angelina, “Clean elements in Abelian rings,” Proc. Indian Acad. Sci. (Math. Sci.), 119, No. 2, 145–148 (2009).zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Badawi, “On Abelian ⇧-regular rings,” Comm. Algebra, 25, No. 4, 1009–1021 (1997).zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    H. E. Bell, “Some commutative results for periodic rings,” Acta Math. Acad. Sci. Hung., 28, 279–283 (1976).zbMATHCrossRefGoogle Scholar
  4. 4.
    H. E. Bell and A. Yaqub, “On commutativity of semiperiodic rings,” Result Math., Online First, Birkh¨auser, Doi:  10.1007/s00025-00-0305-5 (2008).
  5. 5.
    G. Ehrlich, “Unit regular rings,” Portugal. Math., 27, 209–212 (1968).zbMATHMathSciNetGoogle Scholar
  6. 6.
    I. N. Herstein, “A generalization of a theorem of Jacobson. III,” Amer. J. Math., 75, 105–111 (1953).zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    S. U. Hwang, Y. C. Jeon, and K. S. Park, “On NCI rings,” Bull. Korean Math. Soc., 44, No. 2, 215–223 (2007).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    H. A. Khuzam and A. Yaqub, “On rings with prime centers,” Int. J. Math. Sci., 17, No. 4, 667–670 (1994).zbMATHCrossRefGoogle Scholar
  9. 9.
    N. K. Kim, S. B. Nam, and J. Y. Kim, “On simple singular GP-injective modules,” Comm. Algebra, 27, No. 5, 2087–2096 (1999).zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    W. K. Nicholson, “Lifting idempotents and exchange rings,” Trans. Amer. Math. Soc., 229, 269–278 (1977).zbMATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    M. B. Rege, “On von Neumann regular rings and SF-rings,” Math. Jap., 31, No. 6, 927–936 (1986).zbMATHMathSciNetGoogle Scholar
  12. 12.
    L. N. Vaserstein, “Bass’ first stable range condition,” J. Pure Appl. Algebra, 34, 319–330 (1984).zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. C. Wei, “Certain rings whose simple singular modules are nilinjective,” Turk. J. Math., 32, 393–408 (2008).zbMATHGoogle Scholar
  14. 14.
    J. C. Wei and J. H. Chen, “Nil-injective rings,” Int. Electron. J. Algebra, 2, 1–21 (2007).zbMATHMathSciNetGoogle Scholar
  15. 15.
    J. C. Wei and L. B. Li, “Quasinormal rings,” Comm. Algebra, 38, No. 5, 1855–1868 (2010).zbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. C. Wei and L. B. Li, “Weakly normal rings,” Turk. Math. J., 36, 47–57 (2012).zbMATHMathSciNetGoogle Scholar
  17. 17.
    T. S. Wu and P. Chen, “On finitely generated projective modules and exchange rings,” Algebra Coll., 9, No. 4, 433–444 (2002).zbMATHGoogle Scholar
  18. 18.
    H. P. Yu, “On quasiduo rings,” Glasgow Math. J., 37, 21–31 (1995).zbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Yu H. P., “Stable range one for exchange rings,” J. Pure Appl. Algebra, 98, 105–109 (1995).zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. Wei
    • 1
  1. 1.School of MathematicsYangzhou UniversityYangzhouChina

Personalised recommendations