Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 10, pp 1595–1602 | Cite as

On Weakly (μ, λ)-Open Functions

Article

We study some characterizations and properties of almost (μ, λ)-open functions. Some conditions are presented under which an almost (μ, λ)-open function is equivalent to a (μ, λ)-open function.

Keywords

Acta Math Open Function Generalize Topology Generalize Connectedness Generalize Topological Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Al-Omari and T. Noiri, “A unified theory for contra-(μ, λ)-continuous functions in generalized topological spaces,” Acta Math. Hung., 135, 31–41 (2012).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Caldas, E. Ekici, S. Jafari, and R. M. Latif, “On weak BR-open functions and their characterizations in topological spaces,” Demonstr. Math., 44, No. 1, 159–168 (2011).MathSciNetzbMATHGoogle Scholar
  3. 3.
    Á . Császár, “Generalized topology, generalized continuity,” Acta Math. Hung., 96, 351–357 (2002).CrossRefzbMATHGoogle Scholar
  4. 4.
    Á . Császár, “γ-connected sets,” Acta Math. Hung., 101, 273–279 (2003).CrossRefGoogle Scholar
  5. 5.
    Á . Császár, “Separation axioms for generalized topologies,” Acta Math. Hung., 104, 63–69 (2004).CrossRefzbMATHGoogle Scholar
  6. 6.
    Á . Császár, “Generalized open sets in generalized topologies,” Acta Math. Hung., 106, 53–66 (2005).CrossRefzbMATHGoogle Scholar
  7. 7.
    Á . Császár, “δ- and θ-modifications of generalized topologies,” Acta Math. Hung., 120, 275–279 (2008).CrossRefGoogle Scholar
  8. 8.
    Á . Császár, “On generalized neighborhood systems,” Acta Math. Hung., 121, 359–400 (2008).CrossRefGoogle Scholar
  9. 9.
    Á . Császár, “Remarks on quasitopologies,” Acta Math. Hung., 119, 197–200 (2008).CrossRefzbMATHGoogle Scholar
  10. 10.
    Á . Császár, “Extremally disconnected generalized topologies,” Ann. Univ. Sci. Budapest, 47, 91–96 (2004).zbMATHGoogle Scholar
  11. 11.
    E. Ekici, “Generalized hyperconnectedness,” Acta Math. Hung., 133, 140–147 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    E. Ekici, “Generalization of weakly clopen and strongly θ-b-continuous functions,” Chaos, Solitons and Fractals, 38, 79–88 (2008).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Y. K. Kim and W. K. Min, “Remarks on enlargements of generalized topologies,” Acta Math. Hung., 130, 390–395 (2011).MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    W. K. Min, “Some results on generalized topological spaces and generalized systems,” Acta Math. Hung., 108, 171–181 (2005).CrossRefzbMATHGoogle Scholar
  15. 15.
    W. K. Min, “A note on θ(g, g′)-continuity in generalized topological spaces,” Acta Math. Hung., 125, 387–393 (2009).CrossRefzbMATHGoogle Scholar
  16. 16.
    B. Roy, “On a type of generalized open sets,” Appl. Gen. Topol., 12, 163–173 (2011).MathSciNetzbMATHGoogle Scholar
  17. 17.
    B. Roy, “On faintly continuous functions via generalized topology,” Chinese J. Math., Article ID 412391, 6 p. (2013).Google Scholar
  18. 18.
    M. S. Sarsak, “Weakly μ-compact spaces,” Demonstr. Math., 45, No. 4, 929–938 (2012).MathSciNetzbMATHGoogle Scholar
  19. 19.
    R.-X. Shen, “A note on generalized connectedness,” Acta Math. Hung., 122, 231–235 (2009).CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • B. Roy
    • 1
  1. 1.Women’s Christian CollegeKolkataIndia

Personalised recommendations