Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 9, pp 1414–1422 | Cite as

A Note on Semialgebraically Proper Maps

  • D. H. Park
Article

We prove that a semialgebraic map is semialgebraically proper if and only if it is proper. As an application of this assertion, we compare the semialgebraically proper actions with proper actions in a sense of Palais.

Keywords

Compact Subset Open Neighborhood Closed Subset Canonical Projection Isotropy Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Bochnak, M. Coste, and M.-F. Roy, “Real algebraic geometry,” Ergeb. Math., Springer-Verlag, Berlin; Heidelberg, 36 (1998).Google Scholar
  2. 2.
    G. W. Brumfiel, “Quotient space for semialgebraic equivalence relation,” Math. Z., 195, 69–78 (1987).CrossRefMathSciNetGoogle Scholar
  3. 3.
    H. Delfs and M. Knebusch, “Semialgebraic topology over a real closed field II: Basic theory of semialgebraic spaces,” Math. Z., 178, 175–213 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    H. Delfs and M. Knebusch, “Locally semialgebraic spaces,” Lect. Notes Math., Springer, Berlin, 1173 (1985).Google Scholar
  5. 5.
    O. H´ajek, “Parallelizability revisited,” Proc. Amer. Math. Soc., 27, 77–84 (1971).Google Scholar
  6. 6.
    R. S. Palais, “On the existence of slices for actions of noncompact Lie groups,” Ann. Math., 73, No. 2, 295–323 (1961).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Y. Peterzil, A. Pillay, and S. Starchenko, “Definably simple groups in o-minimal structures,” Trans. Amer. Math. Soc., 352, No. 10, 4397–4419 (2002).CrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Pillay, “On groups and fields definable in o-minimal structures,” J. Pure and Appl. Algebra, 53, 239–255 (1988).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. H. Park
    • 1
  1. 1.College of Natural SciencesChonnam National UniversityGwangjuKorea

Personalised recommendations