Ukrainian Mathematical Journal

, Volume 66, Issue 8, pp 1281–1288 | Cite as

CLT-Groups with Hall S-Quasinormally Embedded Subgroups

  • Jianjun Liu
  • Shirong Li

A subgroup H of a finite group G is said to be Hall S-quasinormally embedded in G if H is a Hall subgroup of the S-quasinormal closure H SQG . We study finite groups G containing a Hall S-quasinormally embedded subgroup of index p n for each prime power divisor p n of the order of G.


Normal Subgroup Prime Divisor Solvable Group Hall Subgroup Partial Converse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ballester-Bolinches, J. C. Beidleman, and R. Esteban-Romero, “On some classes of supersoluble groups,” J. Algebra, 312, 445–454 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    A. Ballester-Bolinches, R. Esteban-Romero, and M. Asaad, Products of Finite Groups,Walter de Gruyter, Berlin; New York (2010).CrossRefzbMATHGoogle Scholar
  3. 3.
    F. Barry, “The commutator subgroup and CLT(NCLT) groups,” Math. Proc. R. Ir. Acad. A, 104, 119–126 (2004).CrossRefMathSciNetGoogle Scholar
  4. 4.
    F. Barry, D. MacHale, and Á. Ní Shé, “Some supersolvability conditions for finite groups,” Math. Proc. R. Ir. Acad. A, 106, 163–177 (2006).CrossRefGoogle Scholar
  5. 5.
    S. Baskaran, “On product of two CLT normal subgroups,” Math. Nachr., 83, 89–91 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    T. R. Berger, “A converse to Lagrange’s theorem,” J. Austral. Math. Soc., 25, 291–313 (1978).CrossRefzbMATHGoogle Scholar
  7. 7.
    R. Brandl, “CLT groups and wreath products,” J. Austral. Math. Soc. Ser. A, 42, 183–195 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    R. Brandl and P. A. Linnell, “Character degrees and CLT-groups,” Bull. Austral. Math. Soc., 39, 249–254 (1989).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. G. Bray, “A note on CLT groups,” Pacif. J. Math., 27, 229–231 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    M. Brennan, “A note on the converse to Lagrange’s theorem,” Math. Gazette, 82, 286–288 (1998).CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. J. Curran, “Non-CLT groups of small order,” Comm. Algebra, 11, 111–126 (1983).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    K. Doerk and T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin; New York (1992).CrossRefzbMATHGoogle Scholar
  13. 13.
    T. M. Gagen, “A note on groups with the inverse Lagrange property,” Group Theory (Proc. Miniconf., Austral. Nat. Univ., Canberra, 1975): Lect. Notes Math., Springer, Berlin, 573, 51–52 (1977).Google Scholar
  14. 14.
    H. Heineken, “Groups with all quotient groups Lagrangian,” Arch. Math., 64, 97–102 (1995).CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    C. V. Holmes, “A characterization of finite nilpotent groups,” Amer. Math. Monthly, 73, 1113–1114 (1966).CrossRefzbMATHGoogle Scholar
  16. 16.
    J. F. Humphreys, “On groups satisfying the converse of Lagrange’s theorem,” Proc. Cambridge Phil. Soc., 75, 25–32 (1974).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J. F. Humphreys and D. L. Johnson, “On Lagrangian groups,” Trans. Amer. Math. Soc., 180, 291–300 (1973).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, etc. (1967).CrossRefzbMATHGoogle Scholar
  19. 19.
    N. Jing, “The order of groups satisfying a converse to Lagrange’s theorem,” Mathematika, 47, 197–204 (2000).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    S. R. Li, J. He, G. P. Nong, and L. Q. Zhou, “On Hall normally embedded subgroups of finite groups,” Comm. Algebra, 37, No. 9, 3360–3367 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    J. J. Liu, S. R. Li, and J. He, “CLT-groups with normal or abnormal subgroups,” J. Algebra, 362, 99–106 (2012).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    D. McCarthy, “Sylow’s theorem is a sharp partial converse to Lagrange’s theorem,” Math. Z., 113, 383–384 (1970).CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    D. H. McLain, “The existence of subgroups of given order in finite groups,” Proc. Cambridge Phil. Soc., 53, 278–285 (1957).CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    O. Ore, “Contributions to the theory of groups of finite order,” Duke Math. J., 5, 431–460 (1939).CrossRefMathSciNetGoogle Scholar
  25. 25.
    D. J. S. Robinson, A Course in the Theory of Groups, Springer, New York (1982).CrossRefzbMATHGoogle Scholar
  26. 26.
    J. N. Salunke and A. R. Gotmare, “Converse of Lagrange’s theorem and solvable groups,” Bull. Marathwada Math. Soc., 10, 36–42 (2009).Google Scholar
  27. 27.
    R. R. Struik, “Partial converses to Lagrange’s theorem,” Comm. Algebra, 6, 421–482 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    R. R. Struik, “Partial converses to Lagrange’s theorem II,” Comm. Algebra, 9, 1–22 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Between Nilpotent and Solvable, M. Weinstein (ed.), Polygonal Publ. House, Passaic, Jersey (1982).Google Scholar
  30. 30.
    G. Zappa, “Remark on a recent paper of O. Ore,” Duke Math. J., 6, 511–512 (1940).CrossRefMathSciNetGoogle Scholar
  31. 31.
    L. W. Zhang, “The supersolvability of QCLT groups,” Acta Math. Sinica (N. S.), 1, 378–381 (1985).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jianjun Liu
    • 1
  • Shirong Li
    • 2
  1. 1.School of Mathematics and StatisticsSouthwest UniversityChongqingChina
  2. 2.Guangxi UniversityNanningChina

Personalised recommendations