Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 8, pp 1248–1266 | Cite as

Trigonometric Approximations and Kolmogorov Widths of Anisotropic Besov Classes of Periodic Functions of Several Variables

  • V. V. Myronyuk
Article
  • 42 Downloads

We describe the Besov anisotropic spaces of periodic functions of several variables in terms of the decomposition representation and establish the exact-order estimates of the Kolmogorov widths and trigonometric approximations of functions from unit balls of these spaces in the spaces L q .

Keywords

Periodic Function Besov Space Trigonometric Polynomial Ukrainian National Academy Bernstein Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. V. Besov, “Investigation of one family of functional spaces in connection with the embedding and continuation theorems,” Tr. Mat. Inst. Akad. Nauk SSSR, 60, 42–81 (1961).zbMATHMathSciNetGoogle Scholar
  2. 2.
    S. M. Nikol’skii, “Inequalities for entire functions of finite powers and their application to the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).Google Scholar
  3. 3.
    T. I. Amanov, “Representation and embedding theorems for the functional spaces S p,θ(r) B(R n) and S p,θ(r) * B (0 ≤ x j 2π, j = 1, . . . ,n),Tr. Mat. Inst. Akad. Nauk SSSR, 77, 5–34 (1965).zbMATHMathSciNetGoogle Scholar
  4. 4.
    P. I. Lizorkin, “Generalized Hölder spaces B p,θ(r) and their connection with the Sobolev spaces L p(r) ,Sib. Mat. Zh., 9, No. 5, 1127–1152 (1968).CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    S. M. Nikol’skii, Approximation of Functions of Many Variables and Embedding Theorems [in Russian], Nauka, Moscow (1969).Google Scholar
  6. 6.
    V. N. Temlyakov, Approximation of Periodic Functions, Nova Science Publishers, New York (1993).zbMATHGoogle Scholar
  7. 7.
    V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 1–112 (1986).MathSciNetGoogle Scholar
  8. 8.
    A. S. Romanyuk, “Approximation of the isotropic classes B p,θr of periodic functions of many variables in the space L q ,” in: Approximation Theory of Functions and Related Problems, Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv 5, No. 1 (2008), pp. 263–278.Google Scholar
  9. 9.
    A. S. Romanyuk, “Approximation of the classes B p,θr of periodic functions of one and many variables,” Mat. Zametki, 87, No. 3, 429–442 (2010).CrossRefMathSciNetGoogle Scholar
  10. 10.
    V. V. Myronyuk, “Approximation of the classes B p,θΩ of periodic functions of many variables by Fourier sums in the space L p with p = 1, ∞,Ukr. Mat. Zh., 64, No. 9, 1204–1213 (2012); English translation: Ukr. Math. J., 64, No. 9, 1370–1381 (2013).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse,” Ann. Math., 37, No. 1, 107–110 (1936).CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. S. Romanyuk, “Bilinear approximations and Kolmogorov widths of periodic Besov classes,” in: Theory of Operators, Differential Equations, and the Theory of Functions, Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv 6, No. 1 (2009), pp. 222–236.Google Scholar
  13. 13.
    A. S. Romanyuk, “On the Kolmogorov and linear widths of Besov classes of periodic functions of many variables,” in: Investigations in the Approximation Theory of Functions, Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (1991), pp. 86–92.Google Scholar
  14. 14.
    A. S. Romanyuk, “Kolmogorov and trigonometric widths of the Besov classes B p,θr of periodic functions of many variables,” Mat. Sb., 197, No. 1, 71–96 (2006).CrossRefMathSciNetGoogle Scholar
  15. 15.
    A. S. Romanyuk, Approximate Characteristics of the Classes of Periodic Functions of Many Variables [in Ukrainian], Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • V. V. Myronyuk
    • 1
  1. 1.Institute of MathematicsUkrainian National Academy of SciencesKyivUkraine

Personalised recommendations