Skip to main content
Log in

Estimations of Linear Widths of the Classes B Ω p,θ of Periodic Functions of Many Variables in the Space L q

  • Published:
Ukrainian Mathematical Journal Aims and scope

The exact-order estimates of linear widths are established for the classes B Ω p,θ of periodic functions of many variables in the space L q for certain relations between on the parameters p and q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Bari and S. B. Stechkin, “Best approximations and differential properties of two conjugated functions,” Tr. Mosk. Mat. Obshch., 5, 483–522 (1956).

    MATH  Google Scholar 

  2. Guiqiao Xu, “The n-widths for a generalized periodic Besov classes,” Acta Math. Sci., 25, No. 4, 663–671 (2005).

    MathSciNet  MATH  Google Scholar 

  3. O. V. Besov, “On a family of functional spaces. Embedding theorems and their extensions,” Dokl. Akad. Nauk SSSR, 126, No. 6, 1163–1165 (1959).

    MathSciNet  MATH  Google Scholar 

  4. S. M. Nikol’skii, “Inequalities for the entire functions of finite power and their application to the theory of differentiable functions of many variables,” Tr. Mat. Inst. Akad. Nauk SSSR, 38, 244–278 (1951).

    Google Scholar 

  5. V. M. Tikhomirov, “Widths of the sets in functional spaces and the theory of best approximations,” Usp. Mat. Nauk, 15, No. 3, 81–120 (1960).

    Google Scholar 

  6. É. M. Galeev, “On the linear widths of the classes of periodic functions of many variables,” Vestn. Mosk. Univ., Ser. Mat., Mekh., 4, 13–16 (1987).

    MathSciNet  Google Scholar 

  7. É. M. Galeev, “Linear widths of the H¨older–Nikol’skii classes of periodic functions of many variables,” Mat. Zametki, 59, No. 2, 189–199 (1996).

    Article  MathSciNet  Google Scholar 

  8. A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. I,” Ukr. Mat. Zh., 53, No. 5, 647–661 (2001); English translation: Ukr. Math. J., 53, No. 5, 744–761 (2001).

    Article  MathSciNet  Google Scholar 

  9. A. S. Romanyuk, “Linear widths of the Besov classes of periodic functions of many variables. II,” Ukr. Mat. Zh., 53, No. 6, 820–829 (2001); English translation: Ukr. Math. J., 53, No. 6, 965–977 (2001).

    Article  MathSciNet  Google Scholar 

  10. A. S. Romanyuk, “Widths and the best approximation for the classes B r p,θ of periodic functions of many variables,” Anal. Math., 37, No. 3, 181–213 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Kolmogoroff, “”Uber die beste Anneherung von Funktionen einer gegebenen Funktionenklasse,” Ann. Math., 37, No. 1, 107–110 (1963).

    Article  MathSciNet  Google Scholar 

  12. E. D. Gluskin, “Norms of random matrices and widths of finite-dimensional sets,” Mat. Sb., 120, No. 2, 180–189 (1983).

    MathSciNet  Google Scholar 

  13. B. S. Kashin, “Some properties of the matrices of bounded operators from the space l n2 into l m2 ,Izv. Akad. Nauk Arm. SSR, Ser. Mat., 15, No. 5, 379–394 (1980).

    MathSciNet  MATH  Google Scholar 

  14. A. Zygmund, Trigonometric Series [Russian translation], Vol. 2, Mir, Moscow (1965).

    Google Scholar 

  15. É. M. Galeev, “Kolmogorov widths of the classes of periodic functions of many variables \( {\tilde{W}}_p^{\overline{\alpha}} \) and \( {\tilde{H}}_p^{\overline{\alpha}} \) in the space \( {\tilde{L}}_q \) ,Izv. Akad. Nauk SSSR, Ser. Mat., 49, No. 5, 916–934 (1985).

    MathSciNet  MATH  Google Scholar 

  16. P. I. Lizorkin, “Generalized Hölder spaces B (r) p,θ and their relationship with the Sobolev spaces L (r) p ,Sib. Mat. Zh., 9, No. 5, 1127–1152 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  17. V. N. Temlyakov, “Approximation of functions with bounded mixed derivative,” Tr. Mat. Inst. Akad. Nauk SSSR, 178, 3–113 (1986).

    MathSciNet  Google Scholar 

  18. D. Jackson, “Certain problems of closest approximation,” Bull. Amer. Math. Soc., 39, No. 3, 889–906 (1993).

    Google Scholar 

  19. N. V. Derev’yanko, “Trigonometric widths of classes of periodic functions of many variables,” Ukr. Mat. Zh., 64, No. 8, 1041–1052 (2012); English translation: Ukr. Math. J., 64, No. 8, 1185–1198 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  20. K. V. Solich, “Kolmogorov widths of the classes B Ω p,θ of periodic functions of many variables in the space L q ,Ukr. Mat. Zh., 64, No. 10, 1416–1425 (2012); English translation: Ukr. Math. J., 64, No. 10, 1610–1620 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  21. O. V. Fedunyk, “Linear widths of the classes B Ω p,θ of periodic functions of many variables,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv [in Ukrainian], 1, No. 1 (2004), pp. 375–388.

  22. A. F. Konohrai, “Linear widths of the classes B Ω p,θ of periodic functions of one and many variables,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv [in Ukrainian], 7, No. 1 (2010), pp. 94–112.

  23. V. M. Tikhomirov, “Approximation theory,” in: VINITI Series in Contemporary Problems of Mathematics. Fundamental Directions [in Russian], 14, VINITI, Moscow (1987), pp. 103–260.

  24. B. S. Kashin, “Widths of some finite-dimensional sets and classes of smooth functions,” Izv. Akad. Nauk SSSR, Ser. Mat., 41, No. 2, 334–351 (1977).

    MathSciNet  MATH  Google Scholar 

  25. S. A. Stasyuk, “Approximation of the classes B ω p,θ of periodic functions of many variables with spectra in cubic domains,” Mat. Stud., 35, No. 1, 66–73 (2011).

    MathSciNet  MATH  Google Scholar 

  26. O. V. Fedunyk, “Linear widths of the classes B Ω p,θ of periodic functions of many variables in the space L q ,Ukr. Mat. Zh., 58, No. 1, 93–104 (2006); English translation: Ukr. Math. J., 58, No. 1, 103–117 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 66, No. 7, pp. 909–921, July, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derev’yanko, N.V. Estimations of Linear Widths of the Classes B Ω p,θ of Periodic Functions of Many Variables in the Space L q . Ukr Math J 66, 1013–1027 (2014). https://doi.org/10.1007/s11253-014-0991-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-014-0991-y

Keywords

Navigation