Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 6, pp 961–967 | Cite as

s-Conditionally Permutable Subgroups and p-Nilpotency of Finite Groups

  • Y. Xu
  • X. H. Li
Article
  • 47 Downloads

We study the p-nilpotency of a group such that every maximal subgroup of its Sylow p-subgroups is s-conditionally permutable for some prime p. By using the classification of finite simple groups, we get interesting new results and generalize some earlier results.

Keywords

Normal Subgroup Simple Group Maximal Subgroup Sylow Subgroup Minimal Normal Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Aschbacher, “On the maximal subgroups of the finite classical groups,” Invent. Math., 76, 465–514 (1984).CrossRefMathSciNetGoogle Scholar
  2. 2.
    Li. Xianhua, “Influence of indices of the maximal subgroups of the finite simple groups on the structure of a finite group,” Comm. Algebra, 32, No. 1, 33–64 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Jianxing Bi and Xianhua Li, “A characterization of alternating groups by orders of solvable subgroups,” J. Algebra Appl., 3, No. 4, 445–452 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. M. Cohen, M. W. Liebeck, Jan Saxl, and M. Seitz Gary, “The local maximal subgroups of exceptional groups of Lie-type, finite and algebraic,” Proc. London Math. Soc., 64, No. 3, 21–48 (1992).CrossRefMathSciNetGoogle Scholar
  5. 5.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A.Wilson, Atlas of Finite Groups, Clarendon Press, Oxford (1985).zbMATHGoogle Scholar
  6. 6.
    B. N. Cooperstein, “The maximal subgroups of G 2(2n),J. Algebra, 70, 23–36 (1981).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    A. Delandtsheer, “Flag-transitive finite simple groups,” Arch. Math., 47, 395–400 (1986).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    W. Feit, “On large Zsigmondy primes,” Proc. Amer. Math. Soc., 102, No. 1, 29–33 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    R. M. Guralnick, T. Penttila, C. E. Praeger, and J. Saxl, “Linear groups with orders having certain large prime divisors,” Proc. London Math. Soc., 78, No. 3, 167–214 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Jianhong Huang and Wenbin Guo, “s-Conditionally permutable subgroups of finite groups,” Ann. Math. China A, 28, No. 1, 17–26 (2007).zbMATHMathSciNetGoogle Scholar
  11. 11.
    B. Huppert, Endliche Gruppen I, Springer, New York; Berlin (1967).CrossRefzbMATHGoogle Scholar
  12. 12.
    W. Kimmerle, R. Lyons, R. Sandling, and D. N. Teague, “Composition factors from the group ring and Artin’s theorem on orders of simple groups,” Proc. London Math. Soc., 60, No. 3, 89–122 (1990).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    P. Kleidman and M. Liebeck, The Subgroup Structure of the Finite Classical Groups, Cambridge Univ. Press, Cambridge (1990).CrossRefzbMATHGoogle Scholar
  14. 14.
    P. Kleidman, The Low-Dimensional Finite Classical Groups and Their Subgroups, Preprint (1988).Google Scholar
  15. 15.
    P. B. Kleidman, “The maximal subgroups of the finite 8-dimensional orthogonal groups PΩ8 +(q) and of their automorphism groups,” J. Algebra, 110, 173–242 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    P. B. Kleidman, “The maximal subgroups of the Chevalley groups G 2(q) with q odd, the Ree groups 2 G 2(q), and of their automorphism groups,” J. Algebra, 117, 30–71 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    P. B. Kleidman, “The maximal subgroups of the Steinberg triality groups 3 D 4(q) and of their automorphism groups,” J. Algebra, 115, 182–199 (1988).CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. W. Liebeck, “On the order of maximal subgroup of the finite classical groups,” Proc. London Math. Soc., 50, No. 3, 426–446 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    M. W. Liebeck, C. E. Prager, and J. Saxl, “The maximal factorization of the finite simple groups and their automorphism groups,” Mem. Amer. Math. Soc., 86(432), 1–151 (1990).Google Scholar
  20. 20.
    M. W. Liebeck and J. Saxl, “The primitive permutation groups of odd degree,” J. London Math. Soc., 31, No. 2, 250–264 (1985).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. W. Liebeck and J. Saxl, “On the order of maximal subgroup of the finite exceptional groups of Lie-type,” Proc. London Math. Soc., 55, No. 3, 299–330 (1987).CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    M. W. Liebeck and G. M. Seitz, “A survey of maximal subgroups of exceptional groups of Lie-type,” in: Groups, Combinatorics & Geometry, World Sci. Publ., River Edge, NJ (2003), pp. 139–146.Google Scholar
  23. 23.
    G. Malle, “The maximal subgroups of 2 F 4(q 2),J. Algebra, 139, No. 1, 52–69 (1991).CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Yangming Li and Xianhua Li, “Z-permutable subgroups and p-nilpotency of finite groups,” J. Pure Appl. Algebra, 202, 72–81 (2005).Google Scholar
  25. 25.
    M. Ramadan, “Influence of normality on maximal subgroups of Sylow subgroups of a finite group,” Acta Math. Hung., 59, No. 1–2, 107–110 (1992).CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A. N. Skiba, “A note on c-normal subgroups of finite groups,” Algebra Discrete Math., 3, 85–95 (2005).MathSciNetGoogle Scholar
  27. 27.
    A. N. Skiba, “On weakly s-permutable subgroups of finite groups,” J. Algebra, 315, No. 1, 192–209 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    S. Srinivasan, “Two sufficient conditions for supersolvability of finite groups,” Isr. J. Math., 35, No. 3, 210–214 (1980).CrossRefzbMATHGoogle Scholar
  29. 29.
    Y. Xu, T. Zhao, and X. H. Li, “On CISE-normal subgroups of finite groups,” Turkish J. Math., 36, No. 2, 231–264 (2012).zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Y. Xu
    • 1
  • X. H. Li
    • 2
  1. 1.School of Mathematics and StatisticsHenan University of Sciences and TechnologiesLuoyangChina
  2. 2.School of Mathematical SciencesSoochow UniversitySuzhouChina

Personalised recommendations