Ukrainian Mathematical Journal

, Volume 66, Issue 6, pp 937–948 | Cite as

Approximations by Fourier Sums on the Sets L ψ L P(∙)

  • S. O. Chaichenko

We study some problems of imbedding of the sets of ψ-integrals of the functions f \( \epsilon \) L p(∙) and determine the orders of approximations of functions from these sets by Fourier’s sums.


Modular Space Fourier Series Approximation Theory Lipschitz Condition Lebesgue Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. I. Sharapudinov, “On the topology of the space L p(x)([0; 1]),Mat. Zametki, 26, No. 4, 613–632 (1979).MathSciNetGoogle Scholar
  2. 2.
    O. Kováčik and J. Rakósník, “On spaces L p(x) and W k,p(x) ,Chech. Math. J., 41(116), No. 4, 592–618 (1991).Google Scholar
  3. 3.
    J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin (1983).zbMATHGoogle Scholar
  4. 4.
    W. Orlicz, “Uber conjugierte Exponentenfolgen,” Stud. Math., 3, 200–211 (1931).Google Scholar
  5. 5.
    H. Nakano, Topology of Linear Topological Spaces, Maruzen, Tokyo (1951).Google Scholar
  6. 6.
    S. G. Samko, “Differentiation and integration of variable order and the spaces L p(x) ,” in: Proc. of the Internat. Conf. on the Operator Theory and Complex and Hypercomplex Analysis (Mexico, December 12–17, 1994); Contemp. Math., 212, 203–219 (1994).CrossRefMathSciNetGoogle Scholar
  7. 7.
    I. I. Sharapudinov, “On the uniform boundedness of some families of convolution operators in L p(p = p(x)),Mat. Zametki, 59(2), 291–302 (1996).CrossRefMathSciNetGoogle Scholar
  8. 8.
    X. Fan and D. Zhao, “On the spaces L p(x) and W m,p(x) ,J. Math. Anal. Appl., 263, No. 2, 424–446 (2001).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    I. I. Sharapudinov, “Some problems of approximation theory in the spaces L p(x)(E),Anal. Math., 33, 135–153 (2007).CrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Diening and M. Ruzicka, Calderon–Zigmund Operators on Generalized Lebesgue Spaces L p(x) and Problems Related to Fluid Dynamics, Preprint 04.07.2002, Albert-Ludwings-University, Freiburg.Google Scholar
  11. 11.
    M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Springer, Berlin (2000).CrossRefGoogle Scholar
  12. 12.
    S. G. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators,” Integral Transforms Spectr. Funct., 16, No. 5–6, 461–482 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 1, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).Google Scholar
  14. 14.
    A. I. Stepanets, Methods of Approximation Theory [in Russian], Vol. 2, Institute of Mathematics, Ukrainian National Academy of Sciences, Kiev (2002).Google Scholar
  15. 15.
    V. Kokilashvili and S. Samko, “Operators of harmonic analysis in weighted spaces with nonstandard growth,” J. Math. Anal. Appl., 352, 15–34 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    G. Hardy and J. Littlewood, “Some properties of fractional integrals,” IMZ, 27, 565–606 (1928).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J. Marcinkievicz, “Sur les multiplicateures des séries de Fourier,” Stud. Math., 8, 78–91 (1938).Google Scholar
  18. 18.
    I. I. Sharapudinov, “On the basis property of the Haar system in the space L p(x)([0; 1]) and the principle of localization in the mean,” Mat. Sb., 130(1722), No. 2(6), 275–283 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • S. O. Chaichenko
    • 1
  1. 1.Donbass State Pedagogical UniversitySlavyanskUkraine

Personalised recommendations