Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 5, pp 666–677 | Cite as

Groups with the Same Prime Graph as the Simple Group D n (5)

  • A. Babai
  • B. Khosravi
Article
  • 34 Downloads

Let G be a finite group. The prime graph of G is denoted by Γ(G). Let G be a finite group such that Γ(G) = Γ(D n (5)), where n ≥ 6. In the paper, as the main result, we show that if n is odd, then G is recognizable by the prime graph and if n is even, then G is quasirecognizable by the prime graph.

Keywords

Prime Number Simple Group Prime Divisor Prime Graph Sporadic Simple Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Akhlaghi, M. Khatami, and B. Khosravi, “Quasirecognition by prime graph of the simple group 2F4(q),” Acta Math. Hung., 122, No. 4, 387–397 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Z. Akhlaghi, M. Khatami, and B. Khosravi, “Characterization by prime graph of PGL(2,pk), where p and k >1 are odd,” Int. J. Algebra Comput., 20, No. 7, 847–873 (2010).CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    A. Babai, B. Khosravi, and N. Hasani, “Quasirecognition by prime graph of 2Dp(3) where p = 2n +1 ≥ 5 is a prime,” Bull. Malays. Math. Sci. Soc., 32, No. 3, 343–350 (2009).zbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Babai and B. Khosravi, “Recognition by prime graph of 2D2m+1(3),” Sib. Math. J., 52, No. 5, 993–1003 (2011).CrossRefMathSciNetGoogle Scholar
  5. 5.
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of Finite Groups, Oxford Univ. Press, Oxford (1985).zbMATHGoogle Scholar
  6. 6.
    M. A. Grechkoseeva,W. J. Shi, and A.V. Vasil’ev, “Recognition by spectrum of L16(2m),” Alg. Colloq., 14, No. 3, 462–470 (2007).MathSciNetGoogle Scholar
  7. 7.
    R. M. Guralnick and P. H. Tiep, “Finite simple unisingular groups of Lie type,” J. Group Theory, 6, 271–310 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Hagie, “The prime graph of a sporadic simple group,” Comm. Algebra, 31, No. 9, 4405–4424 (2003).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. He and W. Shi, “Recognition of some finite simple groups of type Dn(q) by spectrum,” Int. J. Algebra Comput., 19, No. 5, 681–698 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    M. Khatami, B. Khosravi, and Z. Akhlaghi, “NCF-distinguishability by prime graph of PGL(2,p), where p is a prime,” Rocky Mountain J. Math., 41, No. 5, 1523–1545 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Khosravi and B. Khosravi, “Quasirecognition by prime graph of the simple group 2G2(q),” Sib. Math. J., 48, No. 3, 570–577 (2007).CrossRefMathSciNetGoogle Scholar
  12. 12.
    B. Khosravi and A. Babai, “Quasirecognition by prime graph of F4(q) where q =2n >2,” Monatsh. Math., 162, No. 3, 289–296 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    B. Khosravi, B. Khosravi, and B. Khosravi, “2-Recognizability of PSL(2,p2) by the prime graph,” Sib. Math. J., 49, No. 4, 749–757 (2008).CrossRefMathSciNetGoogle Scholar
  14. 14.
    B. Khosravi, B. Khosravi, and B. Khosravi, “Groups with the same prime graph as a CIT simple group,” Houston J. Math., 33, No. 4, 967–977 (2007).zbMATHMathSciNetGoogle Scholar
  15. 15.
    B. Khosravi, B. Khosravi, and B. Khosravi, “On the prime graph of PSL(2,p) where p >3 is a prime number,” Acta Math. Hung., 116, No. 4, 295–307 (2007).CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    B. Khosravi, B. Khosravi, and B. Khosravi, “A characterization of the finite simple group L16(2) by its prime graph,” Manuscr. Math., 126, 49–58 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    B. Khosravi, “Quasirecognition by prime graph of L10(2),” Sib. Math. J., 50, No. 2, 355–359 (2009).CrossRefMathSciNetGoogle Scholar
  18. 18.
    B. Khosravi, “Some characterizations of L9(2) related to its prime graph,” Publ. Math. Debrecen, 75, No. 3-4, 375–385 (2009).zbMATHMathSciNetGoogle Scholar
  19. 19.
    B. Khosravi, “n-Recognition by prime graph of the simple group PSL(2, q),” J. Algebra Appl., 7, No. 6, 735–748 (2008).CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    B. Khosravi and H. Moradi, “Quasirecognition by prime graph of finite simple groups Ln(2) and Un(2),” Acta. Math. Hung., 132, No. 12, 140–153 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. S. Lucido, “Prime graph components of finite almost simple groups,” Rend. Semin. Mat. Univ. Padova, 102, 1–14 (1999).zbMATHMathSciNetGoogle Scholar
  22. 22.
    V. D. Mazurov, “Characterizations of finite groups by the set of orders of their elements,” Alg. Logik., 36, No. 1, 23–32 (1997).CrossRefMathSciNetGoogle Scholar
  23. 23.
    V. D. Mazurov and G. Y. Chen, “Recognizability of finite simple groups L4(2m) and U4(2m) by the spectrum,” Alg. Logik., 47, No. 1, 83–93 (2008).zbMATHMathSciNetGoogle Scholar
  24. 24.
    W. Sierpi´nski, Elementary Theory of Numbers, PWN, Warsaw (1964), Vol. 42.Google Scholar
  25. 25.
    E. Stensholt, “Certain embeddings among finite groups of Lie type,” J. Algebra, 53, 136–187 (1978).CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    A.V. Vasil’ev and E. P. Vdovin, “Adjacency criterion in the prime graph of a finite simple group,” Alg. Logik., 44, No. 6, 381–405 (2005).CrossRefMathSciNetGoogle Scholar
  27. 27.
    A. V. Vasil’ev and E. P. Vdovin, “Cocliques of maximal size in the prime graph of a finite simple group,” http://arxiv.org/abs/0905.1164v1.
  28. 28.
    A.V. Vasil’ev and I. B. Gorshkov, “On the recognition of finite simple groups with connected prime graph,” Sib. Math. Zh., 50, No. 2, 233–238 (2009).CrossRefMathSciNetGoogle Scholar
  29. 29.
    A.V. Vasil’ev and M. A. Grechkoseeva, “On the recognition by spectrum of finite simple linear groups over the fields of characteristic 2,” Sib. Mat. Zh., 46, No. 4, 749–758 (2005).zbMATHMathSciNetGoogle Scholar
  30. 30.
    A.V. Vasil’ev and M. A. Grechkoseeva, “On the recognition of finite simple orthogonal groups of dimension 2m, 2m+1 and 2m+2 over the field of characteristic 2,” Sib. Math. Zh., 45, No. 3, 420–431 (2004).CrossRefMathSciNetGoogle Scholar
  31. 31.
    A.V. Vasil’ev, M. A. Grechkoseeva, and V. D. Mazurov, “Characterization of finite simple groups by the spectrum and order,” Alg. Logik., 48, No. 6, 385–409 (2009).CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    A.V. Zavarnitsin, “On the recognition of finite groups by the prime graph,” Alg. Logik., 43, No. 4, 220–231 (2006).CrossRefMathSciNetGoogle Scholar
  33. 33.
    K. Zsigmondy, “Zur theorie der potenzreste,” Monatsh. Math. Phys., 3, 265–284 (1892).CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Babai
    • 1
  • B. Khosravi
    • 1
  1. 1.Amirkabir University of Technology (Tehran Polytechnic)TehranIran

Personalised recommendations