Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 4, pp 617–624 | Cite as

Relationship Between the Green and Lyapunov Functions in Linear Extensions of Dynamical Systems

  • I. M. Hrod
  • V. L. Kulyk
Brief Communications
  • 31 Downloads

We study systems of linear extensions for dynamical systems. As a result, we establish the relationship between the design matrices in the structure of Green functions and alternating Lyapunov functions.

Keywords

Quadratic Form Green Function Lyapunov Function Symmetric Matrix Invariant Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Mitropol’skii, A. M. Samoilenko, and V. L. Kulik, Investigation of the Dichotomy of Linear Systems of Differential Equations with the Use of Lyapunov Functions [in Russian], Naukova Dumka, Kiev (1990).Google Scholar
  2. 2.
    Yu. A. Mitropolsky, A. M. Samoilenko, and V. L. Kulik, Dichotomies and Stability in Nonautonomous Linear Systems, Taylor & Francis, London (2004).Google Scholar
  3. 3.
    A. M. Samoilenko, “On the existence of a unique Green function for the linear extension of a dynamical system on a torus,” Ukr. Mat. Zh., 53, No. 4, 513–521 (2001); English translation: Ukr. Math. J., 53, No. 4, 584–594 (2001).CrossRefGoogle Scholar
  4. 4.
    A. A. Boichuk, “A condition for the existence of a unique Green–Samoilenko function for the problem of invariant torus,” Ukr. Mat. Zh., 53, No. 4, 556–559 (2001); English translation: Ukr. Math. J., 53, No. 4, 637–641 (2001).CrossRefMathSciNetGoogle Scholar
  5. 5.
    K. J. Palmer, “On the reducibility of almost periodic systems of linear differential systems,” J. Different. Equat., 36, No. 3, 374–390 (1980).CrossRefzbMATHGoogle Scholar
  6. 6.
    I. M. Hrod and V. L. Kulyk, “Construction of Lyapunov functions for some linear extensions of dynamical systems,” Visn. Lviv. Univ., Ser. Mekh.-Mat., Issue 72, 79–93 (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • I. M. Hrod
    • 1
  • V. L. Kulyk
    • 2
  1. 1.Hnatyuk Ternopil Pedagogic UniversityTernopilUkraine
  2. 2.Silesian Technical UniversityGliwicePoland

Personalised recommendations