Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 4, pp 602–616 | Cite as

Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals with Bounded Kernel

  • Jianglong Wu
  • Qingguo Liu
Article
  • 35 Downloads
Let \( {\mu}_{\varOmega, \overrightarrow{b}} \) be a multilinear commutator generalized by the n-dimensional Marcinkiewicz integral with bounded kernel μ Ώ and let \( {b}_j\ \in Os{c_{\exp}}_{L^{r_j}} \) , 1 ≤ jm. We prove the following weighted inequalities for ωA and 0 < p < ∞:
$$ {\begin{array}{cc}\hfill {\left\Vert {\mu}_{\varOmega }(f)\right\Vert}_{L^p\left(\omega \right)}\le C{\left\Vert M(f)\right\Vert}_{L^p\left(\omega \right)},\hfill & \hfill \left\Vert {\mu}_{\varOmega, \overrightarrow{b}}(f)\right\Vert \hfill \end{array}}_{L^p\left(\omega \right)}\le C{\left\Vert {M}_{L{\left( \log L\right)}^{1/r}}(f)\right\Vert}_{L^p\left(\omega \right)}. $$

The weighted weak L(log L)1/r -type estimate is also established for p =1 and ωA 1.

Keywords

Compact Support Orlicz Space Degree Zero Type Estimate Bound Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.M. Stein, “On the functions of Littlewood–Paley, Lusin, and Marcinkiewicz,” Trans. Amer. Math. Soc., 88, No. 2, 430–466 (1958).CrossRefMathSciNetGoogle Scholar
  2. 2.
    E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ (1993).zbMATHGoogle Scholar
  3. 3.
    L. Grafakos, Classical and Modern Fourier Analysis, Pearson Education, New Jersey (2004).zbMATHGoogle Scholar
  4. 4.
    A. Torchinsky and S. Wang, “A note on the Marcinkiewicz integral,” Colloq. Math., 60/61, 235–243 (1990).MathSciNetGoogle Scholar
  5. 5.
    Y. Ding, S. Lu, and P. Zhang, “Weighted weak type estimates for commutators of the Marcinkiewicz integrals,” Sci. China (Ser. A), 47, No. 1, 83–95 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    P. Zhang, “Weighted estimates for multilinear commutators of Marcinkiewicz integrals,” Acta Math. Sinica, 24, No. 8, 1387–1400 (2008).CrossRefzbMATHGoogle Scholar
  7. 7.
    P. Zhang, J. L. Wu, and Q. G. Liu, “Weighted endpoint estimates for multilinear commutators of Marcinkiewicz integrals,” Acta Math. Sci., 32A, No. 5, 892–903 (2012).MathSciNetGoogle Scholar
  8. 8.
    J. Lee and K. S. Rim, “Estimates of Marcinkiewicz integrals with bounded homogeneous kernel of degree zero,” Integral Equat. Operator Theory, 48, 213–223 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Y. Ding, “A note on end properties of Marcinkiewicz integral,” J. Korean Math. Soc., 42, No. 5, 1087–1100 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    C. Pérez, “Endpoint estimates for commutators of singular integral operators,” J. Funct. Anal., 128, No. 1, 163–185 (1995).CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    C. Pérez and R. Trujillo-González, “Sharp weighted estimates for multilinear commutators,” J. London Math. Soc., 65, No. 3, 672–692 (2002).CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    C. Pérez, “Sharp estimates for commutators of singular integrals via iterations of the Hardy–Littlewood maximal function,” J. Fourier Anal. Appl., 3, No. 6, 743–756 (1997).CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    F. John and L. Nirenberg, “On functions of bounded mean oscillation,” Comm. Pure Appl. Math., 14, 415–426 (1961).CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    G. E. Hu, Y. Meng, and D. C. Yang, “Multilinear commutators of singular integrals with nondoubling measures,” Integral Equat. Operator Theory, 51, No. 2, 235–255 (2005).CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. M. Rao and Z. D. Ren, “Theory of Orlicz spaces,” Pure Appl. Math., Marcel Dekker, New York (1991).Google Scholar
  16. 16.
    A. Benedek, A. P. Calderón, and R. Panzone, “Convolution operators on Banach space-valued functions,” Proc. Nat. Acad. Sci. USA, 48, No. 3, 356–365 (1962).CrossRefzbMATHGoogle Scholar
  17. 17.
    Q. G. Liu, Several Problems for the Commutator of Marcinkiewicz Integral: MD Thesis, Heilongjiang Univ. (2010).Google Scholar
  18. 18.
    X. F. Shi, CBMO Estimates for the Commutator of Marcinkiewicz Integral: MD Thesis, Xinjiang Univ. (2009).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Jianglong Wu
    • 1
  • Qingguo Liu
    • 2
  1. 1.Mudanjiang Normal UniversityMudanjiangChina
  2. 2.University of Nova GoricaNova GoricaSlovenia

Personalised recommendations