Advertisement

Ukrainian Mathematical Journal

, Volume 66, Issue 2, pp 253–272 | Cite as

Vertex Operator Representations of Type C l (1) and Product-Sum Identities

  • Li-Meng Xia
  • Naihong Hu
Article

We construct a class of homogeneous vertex representations of C l (1) , l ≥ 2, and deduce a series of product-sum identities. These identities have fine interpretation in the number theory.

Keywords

Vertex Operator Cartan Subalgebra Product Identity High Weight Vector Isomorphic Copy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. E. Andrews, “q-series: their development and application in analysis, number theory, combinatorics, physics and computer algebra,” CBMS Reg. Conf. Ser. Math., Amer. Math. Soc., Providence, RI, 66 (1986).Google Scholar
  2. 2.
    D. M. Bressoud, “Analytic and combinational generalizations of the Rogers–Ramanujan identities,” Mem. Amer. Math. Soc., 24 No. 227 (1980).Google Scholar
  3. 3.
    L. Carlitz and M. V. Subbarao, “A simple proof of the quintuple product identity,” Proc. Amer. Math. Soc., 32, 42–44 (1978).MathSciNetCrossRefGoogle Scholar
  4. 4.
    I. B. Frenkel, J. Lepowsky, and A. Meurman, Vertex Operator Algerbas and the Monster, Academic Press, Boston (1989).Google Scholar
  5. 5.
    Y. Gao, “Vertex operators arising from the homogenous realization for \( {\overset{\frown }{gl}}_N \),” Comm. Math. Phys., 159, 1–13 (1994).MathSciNetCrossRefGoogle Scholar
  6. 6.
    N. Jing and L. Xia, “Representations of affine Lie algebras and product-sum identities,” J. Algebra, 314, No. 2, 538–552 (2007).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    V. G. Kac, Infinite-Dimensional Lie Algebras, 3 rd ed, Cambridge Univ. Press, Cambridge, U.K. (1990).CrossRefzbMATHGoogle Scholar
  8. 8.
    J. Lepowsky and R. Wilson, “The structure of standard modules. I. Universal algebras and the Rogers–Ramanujan identities,” Invent. Math., 77, 199–290 (1984).MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    J. Lepowsky and R. Wilson, “The structure of standard modules. II. The case A 1(1) , principal gradation,” Invent. Math., 79, 417–442 (1985).MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    D. Liu and N. Hu, “Vertex representations of the toroidal Lie algebra of type G 2(1) ,” J. Pure Appl. Algebra, 198, 257–279 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    K. C. Misra, “Realization of level one standard \( {\tilde{C}}_{2k+1} \) -modules,” Trans. Amer. Math. Soc., 321, No. 2, 483–504 (1990).MathSciNetzbMATHGoogle Scholar
  12. 12.
    I. Schur, “Zur additiven Zahlentheorie,” S. B. Preuss. Akad. Wiss. Phys. Math. Kl, 488–495 (1926).Google Scholar
  13. 13.
    L. Xia and N. Hu, “Irreducible representations for Virasoro-toroidal Lie algebras,” J. Pure Appl. Algebra, 194, 213–237 (2004).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Li-Meng Xia
    • 1
  • Naihong Hu
    • 2
  1. 1.Jiangsu UniversityJiangsuChina
  2. 2.East China Normal UniversityShanghaiChina

Personalised recommendations